
12 Dirac’s hole theory

Remember: The Dirac equation is a 4 × 4 matrix equation, and therefore it has four independent

solutions. For a free particle with momentum ~p, we have obtained these four solutions in Sect.

4. They have the following values for the energy E and spin component s (along some axis): (i)

(E, s) = (Ep,
1
2
), where Ep =

√
(mc2)2 + (~pc)2; (ii) (E, s) = (Ep,−1

2
); (iii) (E, s) = (−Ep, 12); (iv)

(E, s) = (−Ep,−1
2
).

Problem: What is the physical meaning of the solutions with negative energy?

For simplicity, consider a finite system (a box), where the single particle energies are discrete (because

of the boundary conditions). In the energy level diagram below, each line represents a single particle

state (E, ~p, s), where E = ±Ep is the energy, ~p is the momentum, and s = ±1
2

is the spin direction.

Dirac defined the “vacuum state”, the “one-particle state”, and the “one-hole state” as follows:
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1. Vacuum: All negative energy levels are filled, according to the Pauli principle. All positive

energy levels are empty.

This “vacuum state” (reference state) has:

• energy E = −∞, but by “renormalization” 1 it gets zero energy:

E = −∞ renormalization−→ E = 0;

• zero momentum (because for each occupied momentum ~p, also −~p is occupied):

~P = ~0;

1By “renormalization” we mean to subtract an infinity, i.e., a new definition of “zero energy” or “zero charge”.
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• zero spin (because s = 1/2 and s = −1/2 are occupied):

S = 0;

• charge Q = −∞, but by “renormalization” is gets zero charge:

Q = −∞ renormalization−→ Q = 0.

This kind of vacuum state is also called the “Dirac sea”.

2. One-particle state: All negative energy levels are filled. In the positive energy level (a), which

has (E = +Ep, ~p, s), one electron is added.

This “one-particle state” has:

• energy E = −∞+ Ep
renormalization−→ E = +Ep;

• momentum ~P = ~0 + ~p = ~p;

• spin S = 0 + s = s;

• charge Q = −∞+ e
renormalization−→ Q = e < 0.

3. Single-hole state: All positive energy levels are empty. In the negative energy level (b), which

has (E = −Ep,−~p,−s), one electron is missing.

This “one-hole state” has:

• energy E = −∞− (−Ep)
renormalization−→ E = +Ep;

• momentum ~P = ~0− (−~p) = ~p;

• spin S = 0− (−s) = s;

• charge Q = −∞− e renormalization−→ Q = −e > 0.

We see: The “one-particle state” and “one-hole state” have the same energy (both positive!), momen-

tum and spin, but opposite charge. ⇒ One can interpret the “one-hole state” as the “antiparticle”

(positron) state. In this way, Dirac predicted the positron, which differs from the electron only by

the opposite charge. It was found by Anderson in 1933 in the cosmic rays.

The free Dirac wave functions, normalized in a volume V , are (see Sect. 4):

1. For electron (“one-particle state”) with energy Ep > 0, momentum ~p, spin s, charge e < 0:

ψ
(+)
~p,s (~x, t) =

1√
V

√
mc2

Ep
u(~p, s) e−i(Ept−~p·~x)/~
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2. For positron (“one-hole state”) with energy Ep > 0, momentum ~p, spin s, charge −e > 0:

ψ
(−)
−~p,−s(~x, t) =

1√
V

√
mc2

Ep
v(~p,−s) ei(Ept−~p·~x)/~

However, there is a problem with time evolution:

time

t
0

t
1

When a positron evolves from time t0 (its “creation”) to a later time t1 > t0 (its “annihilation”):

• At time t = t0: Creation of positive energy positron ≡ Annihilation of negative energy electron

( = making a hole in the Dirac sea).

• At time t = t1: Annihilation of positive energy positron ≡ Creation of negative energy electron

( = filling a hole in the Dirac sea).

Result (Feynman, Stückelberg): According to Dirac, we wish to describe the positron as a missing

negative energy electron. This positron is a physical particle, and must move forward in time (first

“born” at time t0, and later “die” at time t1).

But then the negative energy electrons must move backward in time! (They first “die” at time t0,

and later are “born” at time t1.) In the next Section, we will see how this can be realized with Green

functions (propagators).

13 Green function (propagator) for the Dirac equation

Remember: The free Dirac equation (in coordinate space) was 2

(i6∂ −m ) ψ(x) = 0 (13.1)

2From here, we will use “natural system of units”, where ~ = c = 1. We will also use Dirac’s delta-function
δ(4)(x− x), which is doing the following under an integral:∫

d4x′ F (x′) δ(4)(x− x′) = F (x)

i.e., it “filters out” the value at x′ = x of any function F (x′). The Fourier transform of the delta-function is a constant
equal to 1, see Eq.(13.4) below.
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The Green function for the Dirac equation [or: the Green function for the operator (i6∂ −m )], called

S(x− x′), is then defined by the wave equation

(i6∂x −m ) S(x− x′) = δ(4)(x− x′) (13.2)

To solve this equation, we make a Fourier transformation to momentum space:

S(x− x′) =

∫
d4p

(2π)4
S(p) e−ip·(x−x

′) (13.3)

δ(4)(x− x′) =

∫
d4p

(2π)4
1 e−ip·(x−x

′) (13.4)

Then (13.2) becomes simply

(6p−m) S(p) = 1⇒ S(p) =
1

6p−m
=
6p+m

p2 −m2
(13.5)

where in the last step we multiplied (6p+m) in both the numerator and denominator.

We will show later: In order that S(x−x′) propagates positive energy solutions forward in time, and

negative energy solutions backward in time, we need to add iε (where ε = 0+) in the denominator to

get the “Feynman propagator” SF :

SF (p) =
1

6p−m+ iε
=

6p+m

p2 −m2 + iε

=
6p+m

p20 − E2
p + iε

=
6p+m

(p0 − Ep + iε) (p0 + Ep − iε)
(13.6)

Fourier transform back to coordinate space: From (13.3) and (13.6)

SF (x− x′) =

∫
d4p

(2π)4
p0γ

0 − ~p · ~γ +m

(p0 − Ep + iε) (p0 + Ep − iε)
e−ip0(t−t

′) ei~p·(~x−~x
′) (13.7)

In order to perform the integral over p0, use the theorem of residues: We extend p0 to the complex

p0 plane. For a closed integration contour C in the complex p0 plane, we have the important formula∮
C

dp0 F (p0) = 2πi
∑
z

Res [F (p0), p0 = z] (13.8)

Here the sum is over the poles (z) of F (p0) inside the contour C, and Res [F (p0), p0 = z] is the

residue of F (p0) at the pole z. For example, if F (p0) =
f(p0)

p0 − z
, where f(p0) is regular (no poles),

then Res [F (p0), p0 = z] = f(z). [Note: Formula (13.8) holds for “positive” orientation of C. For

negative orientation, there is a minus sign.]

Going back to our integral (13.7), we define the closed contour C in the p0 plane by the straight line
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along the real axis (from −∞ to +∞) plus a half circle (with radius R → ∞) in the upper plane

or lower plane. If the integrand becomes zero on the large half circle, then the result obtained from

(13.8) will be the same as the original integral

∫ ∞
−∞

dp0.

if (t-t’)<0

if (t-t’)>0

X

X

p = -E + i ε

0 p

p = E - i ε

0 p

p
0
- plane

• For (t−t′) < 0, we close the contour in the upper plane, because in this case the factor e−ip0(t−t
′)

becomes zero for p0 = R (cos θ + i sin θ) in the limit R → ∞. (Here 0 ≤ θ ≤ π). The residue

at the pole p0 = −Ep + iε, which is inside C, is calculated as

Res

[
p0γ

0 − ~p · ~γ +m

(p0 − Ep + iε) (p0 + Ep − iε)
e−ip0(t−t

′) , p0 = −Ep + iε

]
=
−Epγ0 − ~p · ~γ +m

−2Ep
eiEp(t−t′)

• For (t−t′) > 0, we close the contour in the lower plane, because in this case the factor e−ip0(t−t
′)

becomes zero for p0 = R (cos θ − i sin θ) in the limit R →∞. (Again 0 ≤ θ ≤ π.) The residue

at the pole p0 = Ep − iε, which is inside C, is calculated as

Res

[
p0γ

0 − ~p · ~γ +m

(p0 − Ep + iε) (p0 + Ep − iε)
e−ip0(t−t

′) , p0 = Ep − iε
]

=
Epγ

0 − ~p · ~γ +m

2Ep
e−iEp(t−t′)

We then obtain for the propagator (13.7):

SF (x− x′) = −i
∫

d3p

(2π)3
ei~p·(~x−~x

′)

[
θ(t− t′) Epγ

0 − ~p · ~γ +m

2Ep
e−iEp(t−t′) + θ(t′ − t) −Epγ

0 − ~p · ~γ +m

2Ep
eiEp(t−t′)

]
(13.9)
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Here θ(x) is the usual “step function”, i.e., θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0.

We set ~p → −~p in the second term of (13.9), and use the result for the energy projection operators

(see Sect. 9)

Epγ
0 − ~p · ~γ +m

2m
= Λ(+)(~p) =

∑
s

u(~p, s)u(~p, s)

−Epγ0 + ~p · ~γ +m

2m
= Λ(−)(~p) = −

∑
s

v(~p, s) v(~p, s)

Then we get

SF (x− x′) = −i
∫

d3p

(2π)3
m

Ep

[
θ(t− t′)

∑
s

u(~p, s)u(~p, s) e−iEp(t−t′) ei~p·(~x−~x
′)

− θ(t′ − t)
∑
s

v(~p, s)v(~p, s) eiEp(t−t′) e−i~p·(~x−~x
′)

]
= −iθ(t− t′)

∫
d3p

∑
s

ψ
(+)
~ps (~x, t)ψ

(+)

~ps (~x′, t′)

+ iθ(t′ − t)
∫

d3p
∑
s

ψ
(−)
−~p−s(~x, t)ψ

(−)
−~p−s(~x

′, t′) (13.10)

where we denoted the positive and negative energy solutions of the Dirac equation by

ψ
(+)
~ps (~x, t) =

√
m

Ep

1

(2π)3/2
u(~p, s) e−i(Ept−~p·~x)

ψ
(−)
−~p−s(~x, t) =

√
m

Ep

1

(2π)3/2
v(~p,−s) ei(Ept−~p·~x)

The normalization of these wave functions is as follows:∫
d3x ψ

(a)†
~p′s′ (~x, t)ψ

(b)
~ps (~x, t) = δab δ

(3)(~p′ − ~p) δs′s

We then see from (13.10) that the Feynman propagator acts as a “time evolution operator” in the

following sense:

i

∫
d3x′ SF (x− x′) γ0 ψ(+)

~ps (~x′, t′) = θ(t− t′)ψ(+)
~ps (~x, t) (13.11)

i

∫
d3x′ SF (x− x′) γ0 ψ(−)

−~p−s(~x
′, t′) = −θ(t′ − t)ψ(−)

−~p−s(~x, t) (13.12)

That is, if we have a wave function at time t′, and if we act with SF on this wave function according

to the l.h.s. of (13.11) and (13.12), then we get the wave function at another time t. In this sense,

we can interpret relations (13.11) and (13.12) as follows: “SF (x− x′) propagates the positive energy
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solutions forward in time, and the negative energy solutions backward in time”.

Note and home work: The above interpretation is possible only with the choice of the ε’s according

to Eq.(13.6). Using any other choice (for example, +iε in both factors of (13.6)) gives other time

evolutions (for example, “both positive and negative energy solutions propagate forward in time”),

which are regarded as unphysical in the theory of Dirac and Feynman.

Final note: The evaluation of the remaining integral
∫

d3p in (13.9) is very tricky, and leads to Bessel

functions of second kind. If you are interested, please refer to any text book on relativistic quantum

mechanics.

14 Green function in an external electromagnetic field

Note: One can confirm directly that the propagator (13.10) satisfies the equation for the Green

function, Eq.(13.2). This goes as follows: Apply the operator (i6∂x −m ) to (13.10), and use

• The Dirac equation

(i6∂ −m )ψ(~x, t) = 0

• The identities for the derivative of step functions

iγ0
∂

∂t
θ(t− t′) = iγ0 δ(t− t′)

iγ0
∂

∂t
θ(t′ − t) = −iγ0 δ(t− t′)

• The completeness relation (for fixed time t)∫
d3p

∑
s

(
ψ

(+)
~ps (~x, t)ψ

(+)†
~ps (~x′, t) + ψ

(−)
~ps (~x, t)ψ

(−)†
~ps (~x′, t)

)
= δ(3)(~x− ~x′)

(14.1)

Home work: Using the above three points, confirm that (13.10) satisfies (13.2).

This observation suggests that the expression (13.10), and also (13.11), (13.12), hold more generally

in the presence of a time-independent external electromagnetic field field: Using the label n (instead
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of ~p, s) to label the states in an external field Aµ = (φ, ~A), we have

(i) The Dirac equation (see Sect. 10)

(i6∂ −m− q6A ) Ψn(~x, t) = 0 (14.2)

(ii) The completeness relation, for fixed time t,∑
n

(
Ψ(+)
n (~x, t) Ψ(+)†

n (~x′, t) + Ψ(−)
n (~x, t) Ψ(−)†

n (~x′, t)
)

= δ(3)(~x− ~x′)

(iii) The wave equation for the propagator

(i6∂x −m− q6A ) SF (x− x′) = δ(4)(x− x′) (14.3)

Then, as explained above for the free case, the Feynman propagator can be expressed by the solutions

of (14.2) as follows:

SF (x− x′) = −iθ(t− t′)
∑
n

Ψ(+)
n (~x, t) Ψ

(+)

n (~x′, t′) + iθ(t′ − t)
∑
n

Ψ(−)
n (~x, t) Ψ

(−)
n (~x′, t′) (14.4)

The time evolution for positive energy states, and its hermite conjugate (h.c.), is

i

∫
d3x′ SF (x− x′) γ0 Ψ(+)

n (~x′, t′) = θ(t− t′) Ψ(+)
n (~x, t) (14.5)

i

∫
d3x Ψ

(+)

n (x) γ0SF (x− x′) = −θ(t− t′) Ψ
(+)

n (~x′, t′) (14.6)

where we used the h.c. of SF with respect to the Dirac matrices: S†F = γ0 SF γ
0.

Dyson equation for the Green function in an external electromagnetic field:

The free Feynman propagator SF0(x−x′) and the Feynman propagator in an external field SF (x−x′)

satisfy the equations

(i6∂x −m) SF0(x− x′) = δ(4)(x− x′) (14.7)

(i6∂x −m) SF (x− x′) = δ(4)(x− x′) + q6A(x)SF (x− x′) (14.8)

Then SF (x− x′) satisfies the following integral equation (Dyson equation):

SF (x− x′) = SF0(x− x′) +

∫
d4y SF0(x− y) (q6A(y)) SF (y − x′) (14.9)

SF = SF0 + SF0 (q6A)SF (symbolically) (14.10)

8



Proof of (14.9): Multiply (14.9) from left by (i6∂x −m) and use (14.7):

(i6∂x −m)SF (x− x′) = δ(4)(x− x′) + (q6A(x))SF (x− x′)

This agrees with (14.8), which ends the proof.

The iteration of (14.10) gives a form of “perturbation series”:

SF = SF0 + SF0 (q6A)SF0 + SF0 (q6A)SF0 (q6A)SF0 + . . . (14.11)

Another equivalent form of the Dyson equation (14.9) is:

SF (x− x′) = SF0(x− x′) +

∫
d4y SF (x− y) (q6A(y)) SF0(y − x′) (14.12)

SF = SF0 + SF (q6A)SF0 (symbolically) (14.13)

The iteration (perturbation series) of (14.13) is identical to (14.11). Therefore (14.13) and (14.10)

are also identical.
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