
1 Lagrangian and Hamiltonian for the Dirac equation

Like in classical mechanics, one can use a Lagrangian L =
∫

d3xL (where L is the Lagrangian

density) also in classical field theory: The field equations (Euler Lagrange equations) should follow

from the invariance of the action S =
∫

dt L =
∫

d4xL under an arbitrary variation of the fields

and their derivatives. This assumption is called the variational principle: δS = 0. The Hamiltonian

is then obtained from the Lagrangian by a Legendre transformation. In this Section, we derive the

Lagrangian and the Hamiltonian for the Dirac equation.

The Dirac equations for ψ(x) and ψ(x) = ψ†(x)γ0 are (see Sect. 5 of RQM1)

(i6∂ −m)ψ(x) = 0 , ψ(x)
(
−i
←
6∂ −m

)
= 0 (1.1)

They can be derived form the following Lagrangian density:

L = ψ(x) (i6∂ −m)ψ(x) = ψ (iγµ∂µ −m)ψ (1.2)

Show this: The action, as a functional of the independent fields ψ and ψ and their derivatives, is:

S =

∫
d4xL

(
ψ, ∂µψ;ψ, ∂µψ

)
(1.3)

Under arbitrary (infinitesimal) variation of the fields ψ, ψ and their derivatives, the variation of the

action is then

δ S =

∫
d4x δL =

∫
d4x

[
∂L
∂ψ

δψ +
∂L

∂ (∂µψ)
δ (∂µψ) +

∂L
∂ψ

δψ +
∂L

∂
(
∂µψ

) δ (∂µψ)] (1.4)

Using δ (∂µψ) = ∂µ (δψ) in the second term, and δ
(
∂µψ

)
= ∂µ

(
δψ
)

in the fourth term, and perform-

ing partial integrations, we get

δ S =

∫
d4x

[(
∂L
∂ψ
− ∂µ

∂L
∂ (∂µψ)

)
δψ +

(
∂L
∂ψ
− ∂µ

∂L
∂
(
∂µψ

)) δψ

]

Because the variational principle δS = 0 must hold for arbitrary variations δψ and δψ, we obtain

the “Euler-Lagrange equations”(
∂L
∂ψ
− ∂µ

∂L
∂ (∂µψ)

)
= 0 ,

(
∂L
∂ψ
− ∂µ

∂L
∂
(
∂µψ

)) = 0 (1.5)

Inserting here the Lagrangian density (1.2), the equations (1.5) are identical to the Dirac equations

(1.1).

Note that the Lagrangian (1.2) is a scalar under Lorentz transformations and parity transformations.
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In the Hamiltonian formulation, one uses the “canonical momenta”

Πψ =
∂L
∂ψ̇

= iψ† , Πψ† =
∂L
∂ψ̇†

= 0

instead of the time derivatives ψ̇ and ψ̇†. The Legendre transformation from the Lagrangian to the

Hamiltonian is then given by

H = Πψ ψ̇ + Πψ† ψ̇
† − L = iψ† ψ̇ − iψ† ψ̇ − ψ

(
iγi ∂i −m

)
ψ

= ψ†
(
iγ0~γ · ~∇+ γ0m

)
ψ = ψ†

(
~α · ~̂p+ βm

)
ψ = ψ†H ψ (1.6)

where H = ~α · ~̂p + βm is the usual Dirac Hamiltonian. If we insert here our positive and negative

energy solutions (see Sect. 5 of RQM1)

ψ(+)(~x, t) =
1√
V

√
m

Ep
u(~p, s)e−i(Ept−~p·~x)/~

ψ(−)(~x, t) =
1√
V

√
m

Ep
v(−~p, s)ei(Ept+~p·~x)/~

we get the obvious results H = Ep/V for the positive energy case, and H = −Ep/V for the negative

energy case.

The form of the Lagrangian density including an external electromagnetic field Aµ =
(
φ, ~A

)
is

obtained by making the “minimal substitution” (see Sect. 10 of RQM1) in the Dirac Lagrangian

(1.2):

L = ψ (i6∂ −m− q6A)ψ = L0 − q
(
ψγµψ

)
Aµ (1.7)

The Euler-Lagrange equations (1.5) then give the Dirac equations in an external field (see Sect.

10 of RQM1). The interaction part of the Lagrangian density (1.7) has the characteristic form

LI = −qjµAµ, where q is the electric charge and jµ = ψγµψ is the conserved current.

Following this example, one can “guess” the interaction Lagrangians for other types of interactions

(strong, weak). For example, in the case of an external pion field (π(x)), a possible form of the

interaction Lagrangian is 1:

LI = −ig
(
ψγ5ψ

)
π(x) (1.8)

1The spin 1/2 field in Eq.(1.8) is a nucleon field or quark field.
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Reason: Because the pion has negative parity (π(−~x, t) = π(~x, t)), it must couple to the pseudo-

scalar “current” ψγ5ψ (see Sect. 7 of RQM1), so that the Lagrangian is a scalar. (The factor i

is necessary for hermiticity.) The constant g is called a coupling constant. The interaction (1.8)

is called a “pseudo-scalar interaction”. It plays an important role in the Yukawa theory of nuclear

forces.

However, there is also another possible interaction Lagrangian of the form

LI = g′
(
ψγ5γµψ

)
(∂µπ(x)) (1.9)

Here ψγ5γµψ is a pseudo-vector (see Sect. 7 of RQM1), and ∂µπ(x) is also a pseudo-vector, therefore

(1.9) is a scalar. This form is called a “pseudo-vector interaction”. In the general case, the interaction

Lagrangian for pions and nucleons (or quarks) is a sum of both terms (1.8) and (1.9).

2 Klein-Gordon equation

Klein-Gordon (K.G.) equation is a relativistic wave equation for spin zero particles. ⇒ The wave

function has only 1 component: ψ(x), which must be Lorentz invariant: ψ′(x′) = ψ(x), where

x′ = Λx.

To get such a wave equation, we square the Dirac equation: From Sect. 3 of RQM1, the Dirac

Hamiltonian is H = (~α · ~̂p)c + β mc2, and the matrices ~α, β were constructed such that H2 =

−~2c2 ∆ +m2c4. Therefore, squaring the Dirac equation gives

i~ψ̇ = H ψ ⇒ −~2ψ̈ = H2 ψ =
(
−~2c2 ∆ +m2c4

)
ψ

⇒ 1

c2
∂2ψ

∂t2
−∆ψ +

(mc
~

)2
ψ = 0

This give the K.G. equation in the form(
� +

(mc
~

)2)
ψ(x) = 0 (2.1)

where the d’Alembert operator is defined by (see Sect. 1 of RQM1) � = 1
c2

∂2

∂t2
− ∆. Plane wave

solutions of (2.1) are of the form

ψ~p(~x, t) = N e−i(Et−~p·~x)/~ (2.2)
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They are eigenfunctions of the momentum operator ~̂p = −i~~∇ with eigenvalue ~p, and N(p) is a

normalization constant. In order that (2.2) is a solution of (2.1), E must have the form

E2 = ~p2c2 + (mc2)2 ⇒ E = ±
√
~p2c2 + (mc2)2 ≡ ±Ep (2.3)

where Ep =
√
~p2c2 + (mc2)2 > 0.

Does Eq.(2.3) mean that the K.G. equation has negative energy solutions, like the Dirac equation?

No ! For the Klein-Gordon case, E is not the eigenvalue of some Hamiltonian (because the K.G.

equation does not have the form i~ψ̇ = Hψ), but just the “frequency” of the solutions (2.2): E =

Ep > 0 means positive frequency, and E = −Ep < 0 means negative frequency:

ψ
(+)
~p (~x, t) = N(p) e−i(Ept−~p·~x)/~ (2.4)

ψ
(−)
~p (~x, t) = N(p) e−i(−Ept−~p·~x)/~ (2.5)

We will show later that for both cases the energy is positive.

Current conservation

Multiplying the K.G. equation (2.1) by ψ∗, and the c.c. of (2.1) by ψ, and taking the difference of

these two equations, we obtain

∂µ [ψ∗∂µψ − ψ ∂µψ∗] = 0 (2.6)

This has the form of current conservation: ∂µj
µ = 0. However, we cannot interpret j0 as a “proba-

bility density”, because it is not positive definite!

If we multiply the current in Eq.(2.6) by i~q, where q > 0 is the electric charge of the particle, we

obtain ∂µj
µ
c = 0, where

jµc = i~q [ψ∗∂µψ − ψ ∂µψ∗] (2.7)

We can interpret jµc = (c ρc,~jc) as the “electric 4-vector current”: The “charge density” is given by

ρc =
i~
c2
q

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
(2.8)

If we insert the solutions (2.4) and (2.5) into (2.8), we obtain

ρ(+)
c =

i~
c2
q

(
−2iEp

~

)
N(p)2 =

2Epq

c2
N2 ≡ q

V

ρ(−)c =
i~
c2
q

(
2iEp
~

)
N(p)2 = −2Epq

c2
N2 ≡ −q

V
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where we have set the normalization factor equal to

N(p) =

√
c2

2EpV
(2.9)

Therefore the solution (2.4) describes a particle with charge q > 0, and (2.5) describes the antiparticle

with charge −q < 0. Therefore we can interpret the conserved current (2.7) as the electric current 2.

Home work: Use the “minimal substitution” (see No. 7) ∂µ → ∂µ+ iq
~cA

µ to obtain the Klein-Gordon

equation in an external electromagnetic field Aµ, and derive the current conservation for this case.

Show that the conserved electric current is then given by

jµc = i~q
[
ψ∗∂µψ − ψ ∂µψ∗ +

2iq

~c
Aµ ψ∗ ψ

]
Show that this current is invariant under the local gauge transformations given in Sect. 10 of RQM1.

Lagrangian and Hamiltonian for Klein-Gordon field

The Lagrangian density for the free Klein-Gordon field is given by

1

~2
L = (∂µψ

∗) (∂µψ)−
(mc

~

)2
ψ∗ ψ (2.10)

Check this: The requirement that δS = 0 under variations of the fields ψ and ψ∗ (and their deriva-

tives) gives the Euler-Lagrange equations 3

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0

∂L
∂ψ∗
− ∂µ

∂L
∂(∂µψ∗)

= 0

Inserting here the Lagrangian density (2.10), these equations become identical to the Klein-Gordon

equations (2.1) for ψ and ψ∗.

For the transformation to the Hamiltonian density, we need the “canonical momenta” of ψ and ψ∗:

Πψ ≡
∂L
∂ψ̇

=
~2

c2
ψ̇∗ ≡ Π

Πψ∗ ≡
∂L
∂ψ̇∗

=
~2

c2
ψ̇ = Π∗

2In order to describe also neutral particle consistently with the Klein-Gordon equation, one needs the methods of
quantum field theory.

3The calculation is the same as for the Dirac case, with the replacement ψ → ψ∗.
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Then the Hamiltonian density is given by

H = Π ψ̇ + Π∗ ψ̇∗ − L = 2

(
c2

~2

)
Π Π∗ −

(
c2

~2

)
Π Π∗ + ~2

(
~∇ψ∗

)
·
(
~∇ψ
)

+ (mc)2 ψ∗ ψ

=

(
c2

~2

)
|Π|2 + ~2|~∇ψ|2 + (mc)2 |ψ|2 > 0 (2.11)

Because this is positive definite, the Hamiltonian H =
∫

d3xH is also positive definite. Therefore,

in the classical field theory, there are no negative energies of the Klein-Gordon field!

As a check of (2.11), we can insert the solutions (2.4) and (2.5) into (2.11), using the normalization

factor given by (2.9), and find

H(+) = H(−) =
Ep
V

which is indeed the energy density (energy Ep per volume V ) of a free particle.
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