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In a previous publication1) we discussed an interest-
ing relation between the skewness J of nuclear matter
(J = 27ρ3

(

d3EA/dρ
3
)

, where ρ is the baryon density
and EA the energy per nucleon in isospin symmetric
nuclear matter) and the isoscalar three-particle inter-
action parameters. In this paper, we wish to discuss
an equally interesting relation between the slope pa-
rameter L of the symmetry energy (L = 3ρdas

dρ , where

as ≃ 32 MeV is the symmetry energy) and the isovec-
tor three-particle interaction parameters.
We extend Landau’s basic formula2) for the vari-

ation of the energy density of nuclear matter to in-
clude the third order term, which involves the spin-
averaged three-particle forward scattering amplitude
h(τ1τ2τ3)(~k1, ~k2, ~k3). Here τi = (p, n), and h is symmet-
ric under simultaneous interchanges of the momentum
variables ~ki and the isospin variables τi. Taking fi-
nally the isospin symmetric limit, we can derive the
following exact relations for J and L in terms of the
incompressibility K and the symmetry energy as:
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Here pF is the Fermi momentum, M the free nucleon
mass, M∗ the Landau effective mass, ∂M∗

∂pF

refers to the
momentum dependence of M∗ at the Fermi surface,

and µ = ρ ∂
∂ρ(3)

(

∆M∗

M

)

expresses the dependence of

∆M∗ = M∗(p)
−M∗(n) on the isovector density ρ(3) =

ρ(p) − ρ(n). The dimensionless isoscalar and isovector
three-particle interaction parameters
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) combinations of the 3-particle for-

ward scattering amplitude at the Fermi surface.
By using empirical information, it was shown in

Ref.1) that the above expression for J requires a large
positive 3-particle term M

M∗
(H0 −H1) > 1.24. On the
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other hand, if we use the canonical value as = 32 MeV
together with µ ≃ 0.27, which is the central value of
the empirical range µ = 0.27± 0.25 reported in Ref.3),
the sum of the first two terms in [. . .] in the expres-
sion for L is ∼ 0.6, almost independent of M∗ within
the empirical range 0.7 < M∗/M < 1. The empiri-
cal range of the slope parameter3) L = 59 ± 16 MeV
then implies that the 3-particle term M

M∗

(
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)

is negative, with a magnitude smaller than unity.
Theoretically the three-particle amplitudes should

be calculated from the Faddeev equation, which is il-
lustrated by Fig. 1. The driving term, which we call
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Fig. 1. First two terms in the Faddeev series. Circles rep-

resent two-body t-matrices.

the “2-particle correlation (2pc) term”, can be easily
estimated by using effective contact interactions of the
Landau-Migdal type. This gives the analytic results
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While the isoscalar H
(2pc)
0 is positive definite and of

the order of unity or even larger, depending mainly on

the magnitude of G′

0, the isovector H
′(2pc)
0 is negative

and small compared to unity for most of the published
sets of Landau-Migdal parameters. Because the p-wave
term H1 is suppressed by large factors1), this simple
estimate makes it plausible that the three-body inter-
actions give a large positive contribution to J , and
a small negative contribution to L. To obtain more
quantitative results, it would be interesting to apply
the Faddeev method in the framework of effective field
theories for nuclear matter.
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1) W. Bentz and I.C. Cloët, Phys. Rev. C 100, 014303

(2019).
2) J. Negele and H. Orland, Quantum Many-particle sys-

tems (Springer, 1980).
3) B.-A. Li, B.-J. Cai, L.-W. Chen and J. Xu, Prog. Part.

Nucl. Phys. 99, 29 (2018).


