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Role of quark degrees of freedom

in hadrons, nuclei and stars

W. Bentz (Tokai Univ., Japan)

I. Cloët (Argonne, USA)

Topics of this talk:

(1) Are nucleons modified in the nuclear medium?

(2) What are the properties of compact stars with quark matter core?



(1) Are nucleons modified in nuclei?
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densly packed system! 
Nucleus = 

                

Medium modifications of nucleons appear to be natural in many cases. - Here we

review 3 phenomena:

● (a) Quenching of quasielastic peak in electron - nucleus scattering
?
⇔

modification of nucleon electromagnetic form factors. Re-analysis of Saclay

data (2001):
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(Coulomb corrections
still under debate)



Are nucleons modified in nuclei?
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● (b) EMC effect in deep inelastic lepton - nucleus scattering
?
⇔ modification of

quark momentum distributions.
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Theory: 

                

             

● (c) Spin quenching phenomena in nuclear physics
?
⇔ depolarization of

quarks in medium.
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(I.C. Cloet et al, 2006)



(2) Compact stars with quark matter cores?
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"Nuclear matter" makes no sense!
At center of compact star: 

                

  

Can we use model parameters adjusted to nuclear matter properties also for

quark matter? - Some modifications seem necessary.
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(Tanimoto, Bentz, Cloet, 2020)



Nambu-Jona-Lasinio (NJL) model
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Effective quark theory of QCD with contact interactions. Based on the strong

enhancement of αs(k
2) at low k2, seen for example in Schwinger-Dyson

parametrizations (A. Holl et al, 2005):

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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Contact interactions generate mesons, diquarks, and nucleons:

● Mesons:

LI = Gπ

[

(

ψψ
)2

−
(

ψγ5~τψ
)2
]

−Gω

(

ψγµψ
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π, ω, ρpole meson



Nambu-Jona-Lasinio (NJL) model
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● Diquarks: LI = GS

(
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T
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● Nucleons:

q

qq

q

qq

pole nucleon

Quark and diquark interact via quark exchange (→ Faddeev approach: Ishii, Bentz,

Yazaki, 1995). Here we use a simple point approximation, with strength adjusted to

reproduce Faddeev result for nucleon mass.



Nambu-Jona-Lasinio (NJL) model
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These 4-fermi contact interactions generate also the mean fields acting on the

quarks in the free nucleon, in nuclear matter, and in quark matter:

● Scalar field: M −m = −2Gπ〈ψψ〉.
The same Gπ is used for all cases.

● Vector fields: ω = 2Gω〈ψ
†ψ〉, ρ = 2Gρ〈ψ

† τ3 ψ〉
In nuclear matter: Gω adjusted to saturation density,

Gρ adjusted to symmetry energy.

Can we use the same Gω, Gρ also in quark matter?
● Pairing field (≡ gap in color superconducting quark matter):

∆ = −2GS〈ψ
T Cγ5τ2λ2 ψ〉

GS was adjusted to the free nucleon mass.

Can we use the same GS also in quark matter?



Results: Nuclear matter
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We describe nuclear matter (and also finite nuclei) in a simple

mean field approximation: Mean scalar and vector fields couple to the quarks in

the nucleons. This is similar in spirit to the quark-meson coupling (QMC) model.

Look first at the simplest case: Binding energy per nucleon in isospin symmetric

nuclear matter:

No chiral collapse, as for point
It saturates! 

                

  

nucleons in linear sigma-model!
Why ??

The basic difference to the point nucleon case is the non-linear behavior of the

nucleon mass as function of quark mass (MN (M)): “scalar polarizability”. If

MN (M) is linear, the chiral collapse occurs.



Results: Nuclear matter
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with an infrared cut-off.
We use proper-time regularization 

                

  

This allows M   to go above the
(eliminated)quark-diquark threshold !
(Bentz, Thomas, 2001)

N

Based on this mean field approximation for nuclear matter (and the extension to

finite nuclei), one can obtain expectation values of quark operators by folding the

following Feynman diagrams with the nucleon wave functions (⇒ convolution

formalism):

p p

k k

p-k

+
p p

q q

k k

p-q

q-k

Let us now go back to the three topics mentioned at the beginning of this talk . . .



1(a) Medium modification of form factors

10 / 17

For example, Dirac form factor of proton (F1p(Q
2)):

0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

Q2 (GeV2)

F
1
p
(Q

2
)

free current

NM current
Proton charge radius increases
Moderate modifications: 

                

  

by ~ 8%.

(I.C. Cloet et al, 2016)

Including also RPA-type correlations from σ, ω, and ρ0 exchange calculated with

our model, we get the following result for the longitudinal response in nuclear

matter:
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1(b) Medium modification of quark distributions
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Quark light-cone momentum distributions in a proton bound in symmetric nuclear

matter:

rpn = 1

up(x)

dp(x)
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Vector mean field plays an
important role here.

After Q2-evolution to Q2 = 5 GeV2, we obtain the following results for the EMC

ratio in 56Fe:
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1(c) Is there a polarized EMC effect?

12 / 17

Spin-dependent quark light-cone momentum distributions in a proton bound in

symmetric nuclear matter:
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Part of spin converted to
orbital angular momentum.

Our model predictions for spin-dependent EMC ratios, for example 7Li and 27Al

(I.C. Cloët et al, 2006):
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2. Color superconducting quark matter in stars
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We used the Gibbs conditions to search for a phase transition to color

superconducting quark matter at high baryon densities.

We imposed the following three conditions for a “physically reasonable” scenario:

● Phase transition occurs in the range 2ρ0 < ρtr < 4ρ0
● Maximum mass of the star: Mmax

star ≥ 2.01M⊙

(from PSR J0348+0432)

● Stability against density fluctuations (dMstar/dρc > 0)
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(T. Tanimoto et al., 2020)



Quark matter (QM) in stars
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Dependence on paramters:

● Increase pairing strength (GS) in QM ⇒ QM becomes softer, phase transition

density decreases.

● Increase vector couplings (Gω, Gρ) in QM ⇒ QM becomes stiffer, phase

transition density increases.

Our findings:
(1) If we use the parameters adjusted to nucleon mass and nuclear matter
properties, QM is too stiff, and nuclear matter remains the stable phase for
all densities. This seems unphysical.

(2) If we fix GS to the value adjusted to the nucleon mass (GS/Gπ=0.6), we
have to reduce the vector couplings (Gω,Gρ) by ∼30%, in order to satisfy
our three conditions.

The following graphs show some results with this choice of parameters, where

ρtr ≃ 0.5 fm−3 and all three conditions are satisfied.



Equation of state, masses and gaps
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of first order type.
Phase transition almost 

  

Quark matter: Consistent
with "constant speed of
sound" parametrizations
(Alford et al, 2013).

Color symmetry strongly
In quark matter phase: 

  

broken (large gap),
chiral symmetry almost
restored (small M).



Star masses (Tanimoto, Bentz, Cloët, 2020)
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central densities.
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form a connected sequence.



Summary
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We used an effective quark theory of QCD to describe free and bound nucleons,

and the mean field approximation to describe nuclear matter, nuclei, quark matter

and compact stars.

● Several nuclear phenomena can be explained naturally by medium

modifications on the quark level: Response functions, EMC effect,

“NuTeV-anomaly” in ν(ν)-nucleus scattering, spin quenching phenomena.

● The same model can also describe the phase transition to color

superconducting quark matter and hybrid stars, if the vector couplings are

reduced by ∼ 30%.

Thanks to Benjamin Gibson (Editor of PRC)
and to our collaborators:

Anthony W. Thomas (Adelaide)

Takehiro Tanimoto (Diploma from Tokai Univ., 2018)
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