1 Klein-Gordon equation

Klein-Gordon (K.G.) equation is a relativistic wave equation for spin zero particles. = The wave
function has only 1 component: ¢ (z), which must be Lorentz invariant: ¢’(z’) = ().
To get such a wave equation, we square the Dirac equation:
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This give the K.G. equation in the form

(D + (%)3 W(x) =0 (1.1)

where the d’Alembert operator is defined by (see No. 1) O = L2 _ A. Plane wave solutions of

c? ot?
(1.1) are of the form
Vs(Z, 1) = N e {BL-PD/N (1.2)

They are eigenfunctions of the momentum operator ]% — —ihV with eigenvalue p, and N(p) is a

normalization constant. In order that (1.2) is a solution of (1.1), E must have the form
E? = p° + (mc®)? = E = £/p?c2 + (mc?)? = +E, (1.3)

where E, = \/p?c? + (mc?)? > 0.
Does this mean negative energy? No ! For the Klein-Gordon case, E is not the eigenvalue of some

Hamiltonian, but just the “frequency” of the solutions (1.2): E'= E, > 0 means positive frequency,

and £ = —E, < 0 means negative frequency:
ZD](;) (Z,t) = N(p) o~ U Ept—p) /I (1.4)
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p

We will show later that for both cases the energy is positive.

Current conservation

Multiplying the K.G. equation (1.1) by #*, and the c.c. of (1.1) by %, and taking the difference of

these two equations, we obtain
Oy [0° 0" — Y "] = 0 (L6)
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This has the form of current conservation: 9,j* = 0. However, we cannot interpret j° as a “proba-

bility density”, because it is not positive definite!

If we multiply the current in Eq.(1.6) by ihq, where ¢ > 0 is the electric charge of the particle, we

obtain 0,j# = 0, where
j = ihq [T 0" — p "7 (1.7)

We can interpret j# = (c pc,jc) as the “electric 4-vector current”: The “charge density” is given by

ih oY o™
e = — T — 1.8
pe="2g (w Wy ) (1.8)
If we insert the solutions (1.4) and (1.5) into (1.8), we obtain
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where we have set the normalization factor equal to
) =/ 5m (19)
N(p) = 1.9
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Therefore the solution (1.4) describes a particle with charge ¢ > 0, and (1.5) describes the antiparticle

with charge —q < 0. Therefore we can interpret the conserved current (1.7) as the electric current .

Home work: Use the “minimal substitution” (see No. 7) 9" — 0" + L A* to obtain the Klein-Gordon
equation in an external electromagnetic field A*, and derive the current conservation for this case.

Show that the conserved electric current is then given by

= iy [0 — 0y + LAy
C

Show that this current is invariant under the local gauge transformations given in No. 7.

'Tn order to describe also neutral particle consistently with the Klein-Gordon equation, one needs the methods of
quantum field theory.



Lagrangian and Hamiltonian for Klein-Gordon field

The Lagrangian density for the free Klein-Gordon field is given by

o L= (007) (0) — (5€) pro (1.10)

Check this: The requirement that §S = 0 under variations of the fields ¢ and ¥* (and their deriva-

tives) gives the Euler-Lagrange equations
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For the Lagrangian density (1.10), these equations become identical to the Klein-Gordon equations
for ¢ and ¥*.

For the transformation to the Hamiltonian density, we need the “canonical momenta” of ¢ and *:
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Then the Hamiltonian density is given by
i * 7k C2 * 02 * = % = *
H o= T4+ 114 —£:2(ﬁ> I — (ﬁ) I + K2 (w ) - (w) + (me)? ¢t ¢
c? -
= <ﬁ> IT1% + B2 V|? + (me)? [ > 0 (1.11)

Because this is positive definite, the Hamiltonian H = [ d®zH is also positive definite. Therefore,

in the classical field theory, there are no negative energies of the Klein-Gordon field!

As a check of (1.11), we can insert the solutions (1.4) and (1.5) into (1.11), using the normalization

factor given by (1.9), and find
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Wave equations for particles with spin 1:

The wave equations for the massless (m = 0) spin-1 field are the Maxwell equations, and for the

massive (m > 0) spin-1 field the Proca equations.

(1) Maxwell equations (in vacuum)

The first set of Maxwell equations for the electric and magnetic fields is

§XE+§ =0

V-B = 0 (1.12)
The second set of Maxwell equations is
VxB-— E = 0
V-E =0 (1.13)
The 4-vector potential A* = <¢, ff) is defined by the equations (see No. 7)
E=-Vo—A,  B=VxA (1.14)

Then the first set of equations (1.12) is satisfied automatically!
In order to express the equations (1.13) in terms of the vector potential, we use the field strength tensor

F* defined by

Fr = ot A” — 9V AH (1.15)
The components F* are related to the electric and magnetic fields by (see Eq.(1.14)
) . . 4 g o oo - 5\ k
FP=-V'A"-3"A" = F', F”:(?’AJ—GJA’:—<V><A> =-B*

[(4, 7, k) is a cyclic permutation of (1,2, 3).] Then the second set of Maxwell equations (1.13) can be

expressed in the compact form
0, F"" =0 (1.16)

because of dF0 =0 = V-E =0 and 9 F% + §;F/" =0 = —E' + (ViB* — V'B7) = 0, which gives
VxB—FE=0.



