
1 Klein-Gordon equation

Klein-Gordon (K.G.) equation is a relativistic wave equation for spin zero particles. ⇒ The wave

function has only 1 component: ψ(x), which must be Lorentz invariant: ψ′(x′) = ψ(x).

To get such a wave equation, we square the Dirac equation:

i~ψ̇ = H ψ ⇒ −~2ψ̈ = H2 ψ =
(
−~2c2 ∆ +m2c4

)
ψ

⇒ 1

c2
∂2ψ

∂t2
−∆ψ +

(mc
~

)2
ψ = 0

This give the K.G. equation in the form(
� +

(mc
~

)2)
ψ(x) = 0 (1.1)

where the d’Alembert operator is defined by (see No. 1) � = 1
c2

∂2

∂t2
− ∆. Plane wave solutions of

(1.1) are of the form

ψ~p(~x, t) = N e−i(Et−~p·~x)/~ (1.2)

They are eigenfunctions of the momentum operator ~̂p = −i~~∇ with eigenvalue ~p, and N(p) is a

normalization constant. In order that (1.2) is a solution of (1.1), E must have the form

E2 = ~p2c2 + (mc2)2 ⇒ E = ±
√
~p2c2 + (mc2)2 ≡ ±Ep (1.3)

where Ep =
√
~p2c2 + (mc2)2 > 0.

Does this mean negative energy? No ! For the Klein-Gordon case, E is not the eigenvalue of some

Hamiltonian, but just the “frequency” of the solutions (1.2): E = Ep > 0 means positive frequency,

and E = −Ep < 0 means negative frequency:

ψ
(+)
~p (~x, t) = N(p) e−i(Ept−~p·~x)/~ (1.4)

ψ
(−)
~p (~x, t) = N(p) e−i(−Ept−~p·~x)/~ (1.5)

We will show later that for both cases the energy is positive.

Current conservation

Multiplying the K.G. equation (1.1) by ψ∗, and the c.c. of (1.1) by ψ, and taking the difference of

these two equations, we obtain

∂µ [ψ∗∂µψ − ψ ∂µψ∗] = 0 (1.6)
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This has the form of current conservation: ∂µj
µ = 0. However, we cannot interpret j0 as a “proba-

bility density”, because it is not positive definite!

If we multiply the current in Eq.(1.6) by i~q, where q > 0 is the electric charge of the particle, we

obtain ∂µj
µ
c = 0, where

jµc = i~q [ψ∗∂µψ − ψ ∂µψ∗] (1.7)

We can interpret jµc = (c ρc,~jc) as the “electric 4-vector current”: The “charge density” is given by

ρc =
i~
c2
q

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
(1.8)

If we insert the solutions (1.4) and (1.5) into (1.8), we obtain

ρ(+)
c =

i~
c2
q

(
−2iEp

~

)
N(p)2 =

2Epq

c2
N2 ≡ q

V

ρ(−)c =
i~
c2
q

(
2iEp
~

)
N(p)2 = −2Epq

c2
N2 ≡ −q

V

where we have set the normalization factor equal to

N(p) =

√
c2

2EpV
(1.9)

Therefore the solution (1.4) describes a particle with charge q > 0, and (1.5) describes the antiparticle

with charge −q < 0. Therefore we can interpret the conserved current (1.7) as the electric current 1.

Home work: Use the “minimal substitution” (see No. 7) ∂µ → ∂µ+ iq
~cA

µ to obtain the Klein-Gordon

equation in an external electromagnetic field Aµ, and derive the current conservation for this case.

Show that the conserved electric current is then given by

jµc = i~q
[
ψ∗∂µψ − ψ ∂µψ∗ +

2iq

~c
Aµ ψ∗ ψ

]
Show that this current is invariant under the local gauge transformations given in No. 7.

1In order to describe also neutral particle consistently with the Klein-Gordon equation, one needs the methods of
quantum field theory.
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Lagrangian and Hamiltonian for Klein-Gordon field

The Lagrangian density for the free Klein-Gordon field is given by

1

~2
L = (∂µψ

∗) (∂µψ)−
(mc

~

)2
ψ∗ ψ (1.10)

Check this: The requirement that δS = 0 under variations of the fields ψ and ψ∗ (and their deriva-

tives) gives the Euler-Lagrange equations

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0

∂L
∂ψ∗
− ∂µ

∂L
∂(∂µψ∗)

= 0

For the Lagrangian density (1.10), these equations become identical to the Klein-Gordon equations

for ψ and ψ∗.

For the transformation to the Hamiltonian density, we need the “canonical momenta” of ψ and ψ∗:

Πψ ≡
∂L
∂ψ̇

=
~2

c2
ψ̇∗ ≡ Π

Πψ∗ ≡ ∂L
∂ψ̇∗

=
~2

c2
ψ̇ = Π∗

Then the Hamiltonian density is given by

H = Π ψ̇ + Π∗ ψ̇∗ − L = 2

(
c2

~2

)
Π Π∗ −

(
c2

~2

)
Π Π∗ + ~2

(
~∇ψ∗

)
·
(
~∇ψ
)

+ (mc)2 ψ∗ ψ

=

(
c2

~2

)
|Π|2 + ~2|~∇ψ|2 + (mc)2 |ψ|2 > 0 (1.11)

Because this is positive definite, the Hamiltonian H =
∫

d3xH is also positive definite. Therefore,

in the classical field theory, there are no negative energies of the Klein-Gordon field!

As a check of (1.11), we can insert the solutions (1.4) and (1.5) into (1.11), using the normalization

factor given by (1.9), and find

H(+) = H(−) =
Ep
V
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Wave equations for particles with spin 1:

The wave equations for the massless (m = 0) spin-1 field are the Maxwell equations, and for the

massive (m > 0) spin-1 field the Proca equations.

(1) Maxwell equations (in vacuum)

The first set of Maxwell equations for the electric and magnetic fields is

~∇× ~E + ~̇B = 0

~∇ · ~B = 0 (1.12)

The second set of Maxwell equations is

~∇× ~B − ~̇E = 0

~∇ · ~E = 0 (1.13)

The 4-vector potential Aµ =
(
φ, ~A

)
is defined by the equations (see No. 7)

~E = −∇φ− ~̇A , ~B = ~∇× ~A (1.14)

Then the first set of equations (1.12) is satisfied automatically!

In order to express the equations (1.13) in terms of the vector potential, we use the field strength tensor

F µν defined by

F µν = ∂µAν − ∂ν Aµ (1.15)

The components F µν are related to the electric and magnetic fields by (see Eq.(1.14)

F i0 = −∇iA0 − ∂0Ai = Ei , F ij = ∂iAj − ∂jAi = −
(
~∇× ~A

)k
= −Bk

[(i, j, k) is a cyclic permutation of (1, 2, 3).] Then the second set of Maxwell equations (1.13) can be

expressed in the compact form

∂ν F
νµ = 0 (1.16)

because of ∂iF
i0 = 0⇒ ~∇ · ~E = 0 and ∂0F

0i + ∂jF
ji = 0⇒ −Ėi +

(
∇jBk −∇iBj

)
= 0, which gives

~∇× ~B − ~̇E = 0.
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