1 Solutions of the free Dirac equation

Dirac equation for free particle:

$$
\begin{equation*}
\left[(\vec{\alpha} \cdot \hat{\vec{p}}) c+\beta\left(m c^{2}\right)\right] \psi(\vec{x}, t)=i \hbar \frac{\partial \psi(\vec{x}, t)}{\partial t} \tag{1.1}
\end{equation*}
$$

where $\hat{\vec{p}}=-i \hbar \vec{\nabla}$ is the momentum operator. Plane wave solution for free particle with momentum \vec{p} :

$$
\begin{equation*}
\psi(\vec{x}, t)=w(\vec{p}, s) e^{-i(E t-\vec{p} \cdot \vec{x}) / \hbar} \tag{1.2}
\end{equation*}
$$

where $E= \pm \sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$, and $w(\vec{p}, s)$ is a 4-component "Dirac spinor", which depends on the spin direction s (see later). Inserting (1.2) into (1.1),

$$
\begin{equation*}
\left[(\vec{\alpha} \cdot \vec{p}) c+\beta\left(m c^{2}\right)\right] w(\vec{p}, s)=E w(\vec{p}, s) \tag{1.3}
\end{equation*}
$$

We express $w(\vec{p}, s)$ in the form

$$
\begin{equation*}
w(\vec{p}, s)=\binom{\phi}{\chi} \tag{1.4}
\end{equation*}
$$

where ϕ and χ are 2-component "Pauli spinors", depending on (\vec{p}, s). Inserting this into (1.3),

$$
\left(\begin{array}{cc}
\left(E-m c^{2}\right) & -(\vec{\sigma} \cdot \vec{p}) c \tag{1.5}\\
-(\vec{\sigma} \cdot \vec{p}) c & \left(E+m c^{2}\right)
\end{array}\right)\binom{\phi}{\chi}=0
$$

Therefore, the coupled equations for ϕ and χ are

$$
\begin{align*}
& \left(E-m c^{2}\right) \phi-(\vec{\sigma} \cdot \vec{p}) c \chi=0 \tag{1.6}\\
& \left(E+m c^{2}\right) \chi-(\vec{\sigma} \cdot \vec{p}) c \phi=0 \tag{1.7}
\end{align*}
$$

- For $E=+\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} \equiv E_{p}$ (positive energy), we use (1.7) to eliminate χ :

$$
\begin{equation*}
\chi=\frac{(\vec{\sigma} \cdot \vec{p}) c}{E_{p}+m c^{2}} \phi \tag{1.8}
\end{equation*}
$$

Then the positive energy spinor $\left(w_{+}\right)$becomes

$$
\begin{equation*}
w_{+}(\vec{p}, s) \equiv u(\vec{p}, s)=N_{p}\binom{\phi(s)}{\frac{(\vec{\sigma} \cdot \vec{p}) c}{E_{p}+m c^{2}} \phi(s)} \tag{1.9}
\end{equation*}
$$

Here N_{p} is a normalization factor (see later).

- For $E=-\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} \equiv-E_{p}$ (negative energy), we use (1.6) to eliminate ϕ :

$$
\begin{equation*}
\phi=-\frac{(\vec{\sigma} \cdot \vec{p}) c}{E_{p}+m c^{2}} \chi \tag{1.10}
\end{equation*}
$$

Then the negative energy spinor $\left(w_{-}\right)$becomes

$$
\begin{equation*}
w_{-}(\vec{p}, s) \equiv v(-\vec{p}, s)=N_{p}\binom{-\frac{(\vec{\sigma} \cdot \vec{p} c}{E_{p}+m c^{2}} \chi(s)}{\chi(s)} \tag{1.11}
\end{equation*}
$$

The Dirac equation does not determine the 2-component Pauli spinors ϕ in (1.9) or χ in (1.11) ${ }^{1}$! Possible choice of Pauli spinors: If the particle has a definite spin direction (up or down) in its rest frame: Define the z axis as the "spin quantization axis", and require that $u(\vec{p}=0, s)$ and $v(\vec{p}=0, s)$ are eigenvectors of the spin operator (in units of \hbar) $S_{3}=\frac{1}{2} \Sigma_{3}$, with eigenvalues $s= \pm 1 / 2$:

$$
\begin{align*}
& S_{3} u(\vec{p}=0, s)=s u(\vec{p}=0, s) \Rightarrow \frac{1}{2} \sigma_{3} \phi(s)=s \phi(s) \Rightarrow \phi(+1 / 2)=\binom{1}{0}, \phi(-1 / 2)=\binom{0}{1} \\
& S_{3} v(\vec{p}=0, s)=s v(\vec{p}=0, s) \Rightarrow \frac{1}{2} \sigma_{3} \chi(s)=s \chi(s) \Rightarrow \chi(+1 / 2)=\binom{1}{0}, \chi(-1 / 2)=\binom{0}{1} \tag{1.12}
\end{align*}
$$

Notes:

- If some other direction \vec{n} is chosen as the spin quantization axis, then one chooses $\phi(s)$ and $\chi(s)$ as eigenvectors of $\frac{1}{2}(\vec{\sigma} \cdot \vec{n})$ with eigenvalues $s= \pm 1 / 2: \frac{1}{2}(\vec{\sigma} \cdot \vec{n}) \phi(s)=s \phi(s)$, and $\frac{1}{2}(\vec{\sigma} \cdot \vec{n}) \chi(s)=s \chi(s)$.
- Important point: Hamiltonian H and spin operators $\vec{S}=\frac{\hbar}{2} \vec{\Sigma}$ do not commute: $\left[H, \Sigma_{i}\right] \neq 0$ $(i=1,2,3) . \Rightarrow$ In general, the spinors u, v are eigenvectors of H, but cannot be also eigenvectors of S_{3}.
- Normalization of spinors: We choose the orthonormalization as

$$
\begin{equation*}
u^{\dagger}\left(\vec{p}, s^{\prime}\right) u(\vec{p}, s)=\frac{E_{p}}{m c^{2}} \delta_{s s^{\prime}}, \quad v^{\dagger}\left(\vec{p}, s^{\prime}\right) v(\vec{p}, s)=\frac{E_{p}}{m c^{2}} \delta_{s s^{\prime}}, \quad v^{\dagger}\left(-\vec{p}, s^{\prime}\right) u(\vec{p}, s)=u^{\dagger}\left(\vec{p}, s^{\prime}\right) v(-\vec{p}, s)=0 \tag{1.13}
\end{equation*}
$$

[^0]This determines the normalization factor N_{p}. Using $\phi^{\dagger}\left(s^{\prime}\right) \phi(s)=\delta_{s s^{\prime}}$ we get

$$
\begin{aligned}
N_{p}^{2} \phi^{\dagger}\left(s^{\prime}\right)\left(1+\frac{\vec{p}^{2} c^{2}}{\left(E_{p}+m c^{2}\right)^{2}}\right) \phi(s) & \equiv \frac{E_{p}}{m c^{2}} \delta_{s s^{\prime}} \\
\Rightarrow N_{p}^{2}\left(1+\frac{\vec{p}^{2} c^{2}}{\left(E_{p}+m c^{2}\right)^{2}}\right) & \equiv \frac{E_{p}}{m c^{2}} \\
\Rightarrow N_{p}^{2}\left(1+\frac{E_{p}-m c^{2}}{E_{p}+m c^{2}}\right) & \equiv \frac{E_{p}}{m c^{2}}
\end{aligned}
$$

This gives

$$
\begin{equation*}
N_{p}=\sqrt{\frac{E_{p}+m c^{2}}{2 m c^{2}}} \tag{1.14}
\end{equation*}
$$

Finally, the wave functions (1.2) are normalized (in a volume V) as

$$
\begin{equation*}
\int_{V} \mathrm{~d}^{3} x \psi^{\dagger}(\vec{x}, t) \psi(\vec{x}, t)=1 \tag{1.15}
\end{equation*}
$$

Final results for solutions of the Dirac equation (1.1):

- Positive energy solution:

$$
\begin{align*}
\psi_{\vec{p}, s}^{(+)}(\vec{x}, t) & =\frac{1}{\sqrt{V}} \sqrt{\frac{m c^{2}}{E_{p}}} u(\vec{p}, s) e^{-i\left(E_{p} t-\vec{p} \cdot \vec{x}\right) / \hbar} \\
u(\vec{p}, s) & =\sqrt{\frac{E_{p}+m c^{2}}{2 m c^{2}}}\binom{\phi(s)}{\frac{(\vec{\sigma} \cdot \vec{p} c}{E_{p}+m c^{2}} \phi(s)} \tag{1.16}
\end{align*}
$$

This is the wave function of a particle with energy $E_{p}>0$, momentum \vec{p}, and spin projection $s= \pm 1 / 2$ in its rest frame.

- Negative energy solution:

$$
\begin{align*}
\psi_{\vec{p}, s}^{(-)}(\vec{x}, t) & =\frac{1}{\sqrt{V}} \sqrt{\frac{m c^{2}}{E_{p}}} v(-\vec{p}, s) e^{i\left(E_{p} t+\vec{p} \cdot \vec{x}\right) / \hbar} \\
v(\vec{p}, s) & =\sqrt{\frac{E_{p}+m c^{2}}{2 m c^{2}}}\binom{\frac{\vec{\sigma} \cdot \vec{p}) c}{E_{p}+m c^{2}} \phi(s)}{\phi(s)} \tag{1.17}
\end{align*}
$$

This is the wave function of a particle with energy $-E_{p}<0$, momentum \vec{p}, and spin projection $s= \pm 1 / 2$ in its rest frame.

These wave functions satisfy the orthonormalization conditions (with $\alpha, \alpha^{\prime}=+$ or -)

$$
\begin{equation*}
\int_{V} \mathrm{~d}^{3} x \psi_{\vec{p}, s^{\prime}}^{\left(\alpha^{\prime}\right) \dagger}(\vec{x}, t) \psi_{\vec{p}, s}^{(\alpha)}(\vec{x}, t)=\delta_{\alpha^{\prime} \alpha} \delta_{s^{\prime} s} \tag{1.18}
\end{equation*}
$$

2 Dirac γ-matrices

Instead of $(\beta, \vec{\alpha})$, one can also use

$$
\gamma^{0} \equiv \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \vec{\gamma} \equiv \beta \vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \quad \gamma^{\mu} \equiv\left(\gamma^{0}, \vec{\gamma}\right), \quad \gamma_{\mu} \equiv\left(\gamma^{0},-\vec{\gamma}\right) .
$$

Then the Dirac equation (1.1) can be expressed as (remember: $x^{0}=c t$)

$$
\begin{equation*}
\left(i \hbar \gamma^{0} \frac{\partial}{\partial x^{0}}-\vec{\gamma} \cdot \hat{\vec{p}}-m c\right) \psi(\vec{x}, t)=0 \tag{2.19}
\end{equation*}
$$

where $\hat{\vec{p}}=-i \hbar \vec{\nabla}$ is the momentum operator.
Now define the operator \hat{p}_{μ} in terms of the contravariant derivative (see No. 1) as

$$
\begin{equation*}
\hat{p}^{\mu} \equiv i \hbar \partial^{\mu}=i \hbar\left(\frac{\partial}{\partial x^{0}},-\vec{\nabla}\right)=\left(i \hbar \frac{\partial}{\partial x^{0}}, \hat{\vec{p}}\right) \tag{2.20}
\end{equation*}
$$

Then (2.19) becomes

$$
\begin{equation*}
\left(\hat{p}^{\mu} \gamma_{\mu}-m c\right) \psi(x)=0 \tag{2.21}
\end{equation*}
$$

Finally, we define the "slash notation": For any 4 -vector V^{μ}, the 4×4 matrix V is defined by

$$
\begin{equation*}
V \equiv \gamma_{\mu} V^{\mu}=\gamma^{0} V^{0}-\vec{\gamma} \cdot \vec{V} \tag{2.22}
\end{equation*}
$$

Then we can express (2.21) as

$$
\begin{equation*}
(\not p-m c) \psi(x)=0 \tag{2.23}
\end{equation*}
$$

The previous relations for the matrices $(\beta, \vec{\alpha})$ become

$$
\begin{align*}
\left(\gamma^{0}\right)^{2} & =1, \quad\left(\gamma^{i}\right)^{2}=-1, \quad(i=1,2,3 \text { fix }) \\
\left\{\gamma^{\mu}, \gamma^{\nu}\right\} & =2 g^{\mu \nu} \tag{2.24}
\end{align*}
$$

where $\{A, B\}=A B+B A$ is the anticommutator. Instead of ψ^{\dagger}, it is convenient to use $\bar{\psi}$, which is defined by

$$
\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}
$$

Then the probability density $\rho=\psi^{\dagger} \psi$ and the current $\vec{j}=c \psi^{\dagger} \vec{\alpha} \psi$ can be combined into a 4 -vector

$$
\begin{equation*}
j^{\mu}=c \bar{\psi} \gamma^{\mu} \psi=(c \rho, \vec{j}), \quad\left(\text { current conservation : } \partial_{\mu} j^{\mu}=0\right) \tag{2.25}
\end{equation*}
$$

[^0]: ${ }^{1}$ Reason: (1) Dirac eq. is a homogeneous matrix equation; (2) the spin direction is still no specified in (1.9) and (1.11).

