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the lattice QCD calculations, with the exception of the quadrupole moment and corresponding form
factor, which may be related to a lack of spherical symmetry on the lattice.
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I. INTRODUCTION

The structure of hadrons presents a remarkable chal-
lenge to the theory of strong interactions – quantum chro-
modynamics (QCD) – and a critical feature of a hadron’s
structure is its distribution of charge and magnetization,
which is empirically related to its electromagnetic form
factors [1]. The direct calculation of hadron form factors
using QCD is currently only possible through lattice QCD,
albeit limited to the low to moderate Q2 region. However,
to gain insight into the relevant dynamical mechanisms
behind the observed structure it is useful to work with
models that approximate key features of QCD. An impor-
tant focus for this comparison are the meson form factors.
Because of their short lifetimes [2] they present a unique
challenge experimentally – making both lattice QCD and
model calculations critical. The pion form factor has been
successfully measured over a wide range of four momen-
tum transfer, while the vector meson form factors have
not had the same amount of experimental exploration.
However, the BABAR collaboration has measured the
cross-section for the reaction e+ + e� ! ⇢+ + ⇢� [3],
which has been analyzed to garner information on the
⇢-meson form factors [4].

The ⇢ form factors, or equivalently the polarization am-
plitudes, have been calculated using a variety of methods,
for example, phenomenological models [5, 6], constituent
quark models in the light front framework [7–14], QCD
sum rules [15–18] and the Dyson-Schwinger equations [19–
22]. The first attempts to compute ⇢ form factors using
lattice QCD were reported in Refs. [23, 24] in the quenched
framework. The recent work of Owen et al. [25] and Shultz
et al. [26] give two independent lattice QCD calculations
based upon di↵erent approaches. These lattice results,
and the previous work with quark models, provides a solid
background for comparison with results computed within
other models.

In this work we extend the ⇢-meson form factor calcu-
lation of Ref. [27], where the focus was a comparison with
the axialvector diquark form factors which formed a criti-

cal part of a nucleon form factor calculation. Here we use
the same confining version of the Nambu–Jona-Lasinio
(NJL) model [28, 29] to investigate the quark mass de-
pendence of the ⇢ form factors, and perform a detailed
comparison with the lattice QCD results of Refs. [25, 26].
Following Ref. [27] we include the dressing of the quark-
photon vertex from the inhomogenerous Bethe-Salpeter
equation and a pion cloud, which are critical for a good
agreement with lattice results. Similar finding were made
in Ref. [30], where the same framework was applied to
the ⇡ and K form factors.
The outline of the paper is as follows: In Sec. II we

briefly review the NJL model as applied to q̄q bound
states and the calculation of the ⇢ electromagnetic form
factors is discussed in Sec. III. The results are compared
to those from lattice QCD and various quark models in
Sec. IV and Sec. V presents our conclusions.

II. NAMBU–JONA-LASINIO MODEL

In its original formulation the NJL model successfully
encapsulated the e↵ects of dynamical chiral symmetry
breaking, where the pion emerged as a Goldstone bo-
son and the nucleon was the fundamental degree of free-
dom [28, 29]. The NJL model has subsequently been
re-expressed with quarks as the fundamental constituents,
making the relation with QCD evident. Importantly, the
NJL model [31] preserves the fundamental symmetries
of QCD. In particular, the generation of mass through
the dynamical breaking of chiral symmetry is beautifully
illustrated. In contrast, quark confinement is not auto-
matically incorporated in the model. However, it has
been shown that it can be mimicked by the introduction
of an infrared cuto↵ in the proper-time regularization
scheme [32–34]. The NJL model has a history of suc-
cess in the description of numerous meson [31, 35, 36]
and baryon [35, 36] properties, including the nucleon par-
ton distribution functions [37–41] and electromagnetic
form factors [27]. More recently these studies have been
extended to the computation of the axial charges for
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Figure 1. (Colour online) The NJL gap equation in the Hartree-
Fock approximation, where the thin line represents the elemen-
tary quark propagator, S�1

0 (k) = /k �m+ i", and the shaded
circle represents the 4-fermion interaction.

strangeness conserved �-decays in the baryon octet [42]
and possible insights into the solutions of long time enig-
mas in QCD, such as the �I = 1/2 rule in kaon de-
cays [43]. It is this wealth of achievement, together with
the recent developments in lattice QCD that encourage us
to test whether the model gives an accurate description
of ⇢-meson properties.

In the application of the NJL model to the solution of
the form factors of the ⇢-meson, we use a two-flavor NJL
Lagrangian which in the q̄q interaction channel reads:

L =  ̄
�
i/@ � m̂

�
 

+ 1
2 G⇡

h�
 ̄ 

�2 �
�
 ̄�5~⌧ 

�2i� 1
2 G!

�
 ̄�µ 

�2

� 1
2 G⇢

h�
 ̄�µ~⌧ 

�
+
�
 ̄�µ�5~⌧ 

�2i
, (1)

where ~⌧ are the Pauli matrices representing isospin and
m̂ = diag [mu, md] is the current quark mass matrix. We
assume mu = md = m. The fermion coupling G⇡ rep-
resents the strength of the scalar (q̄q) and pseudoscalar
(q̄�5q) interaction channels and is responsible for the dy-
namical generation of the dressed quark masses through
the breaking of chiral symmetry. The strength of the
vector-isoscalar and vector-isovector four fermion interac-
tions is given by G! and G⇢, respectively. The explicit
breaking of U(1) axial symmetry is often modeled by the
inclusion of an extra six-fermion determinant interaction
term, which describes the ⌘ and ⌘0 mass splitting [31],
however, this is not directly related to our calculation
so we do not consider it. We regularize the NJL inter-
action through the proper-time regularization scheme,
using an infrared cuto↵ (⇤IR) to remove unphysical decay
thresholds for hadrons into quarks [32–34].

The dressed quark masses are given by the solution of
the gap equation depicted in Fig. 1, which in the proper-
time scheme reads

M = m+
3

⇡2
M G⇡

Z 1/⇤2
IR

1/⇤2
UV

d⌧
e�⌧M2

⌧2
, (2)

giving a dressed quark propagator of the form:

S(k)�1 = /k �M + i". (3)

The description of mesons as q̄q bound states in the
NJL model is obtained via the Bethe-Salpeter equation
(BSE) in the random-phase approximation, as illustrated
in Fig. 2. The solution of the BSE in each meson channel
is given by a two-body t-matrix that depends on the
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Figure 2. (Colour online) Bethe-Salpeter equation for
antiquark–quark (meson) correlations in the NJL model using
the random phase approximation.

nature of the interaction channel [27], where the reduced
t-matrices for the ⇡, ⇢ and ! mesons read

⌧⇡(q) =
�2iG⇡

1 + 2G⇡ ⇧PP (q2)
, (4)

⌧µ⌫⇢(!)(q) =
�2iG⇢(!)

1 + 2G⇢(!) ⇧V V (q2)

⇥

gµ⌫ + 2G⇢(!) ⇧V V (q

2)
qµq⌫

q2

�
, (5)

and the bubble diagrams are defined by

⇧PP

�
q2
�
= 6i

Z
d4k

(2⇡)4
TrD [�5 S(k) �5 S(k + q)] , (6)

⇧V V (q
2)

✓
gµ⌫ � qµq⌫

q2

◆
=

6i

Z
d4k

(2⇡)4
TrD [�µ S(k) �⌫ S(k + q)] . (7)

The meson masses are given by the poles in the reduced
t-matrices, that is

1 + 2G⇡ ⇧PP

�
q2 = m2

⇡

�
= 0, (8)

1 + 2G⇢ ⇧V V

�
q2 = m2

⇢

�
= 0, (9)

1 + 2G! ⇧V V

�
q2 = m2

!

�
= 0. (10)

Expanding the full t-matrices about these poles gives the
homogeneous Bethe-Salpeter vertices for the ⇡, ⇢ and !
mesons:

�i
⇡ =

p
Z⇡ �5 ⌧i, �µ,i

⇢ =
p
Z⇢ �

µ ⌧i, �µ
! =

p
Z! �

µ,
(11)

where the meson-quark-quark couplings read [30, 31, 36]

Z�1
⇡ = � @

@q2
⇧PP (q

2)
���
q2=m2

⇡

, (12)

Z�1
⇢(!) = � @

@q2
⇧V V (q

2)
���
q2=m2

⇢(!)

. (13)

III. RHO ELECTROMAGNETIC FORM
FACTORS

The electromagnetic current for a ⇢-meson is parame-
terized by three form factors and takes the form:

jµ,↵�⇢ (p0, p) =
h
g↵�F1⇢(Q

2)� q↵q�

2m2
⇢

F2⇢(Q
2)
i
(p0 + p)

µ

�
�
q↵gµ� � q�gµ↵

�
F3⇢(Q

2), (14)
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Figure 3. (Colour online) Feynman diagrams representing the
electromagnetic current for a meson in our NJL model.

where the polarization of the incoming and outgoing ⇢-
meson is represented by the Lorentz indices ↵ and �,
respectively, and µ is the photon polarization. From these
form factors one can define three Sachs form factors for the
⇢, namely, the charge [GC(Q2)]; the magnetic [GM (Q2)]
and quadrupole [GQ(Q2)] form factors, which read

GC(Q
2) = F1(Q

2) + 2
3⌘GQ(Q

2), (15)

GM (Q2) = F3(Q
2), (16)

GQ(Q
2) = F1(Q

2) + (1 + ⌘)F2(Q
2)� F3(Q

2), (17)

where ⌘ = Q2

4m2
⇢
and all form factors are dimensionless.

In our NJL model the ⇢ electromagnetic current is
depicted in Fig. 3 and expressed by

jµ,↵�⇢,ij (p0, p) = i

Z
d4k

(2⇡)4

⇥ Tr
h
�
�,j
⇢ S(p0 + k)⇤µ(p0, p)S(p+ k)�↵,i

⇢ S(k)
i

+ i

Z
d4k

(2⇡)4

⇥ Tr
h
�↵,i
⇢ S(k � p)⇤µ(p0, p)S(k � p0)�

�,j
⇢ S(k)

i
, (18)

where the Bethe-Salpeter vertices for the ⇢ are given in
Eq. (11), ⇤µ(p, p0) is the dressed quark-photon vertex and
the trace is over Dirac, color and isospin indices. Follow-
ing the calculations in Refs. [27, 30], we consider three
versions of the quark-photon vertex, each of increasing
sophistication; a pointlike quark-photon vertex; a vertex
given by the solution of the inhomogeneous Bethe-Salpeter
equation (illustrated in Fig. 4); and finally a quark-photon
vertex which includes the pion cloud at the quark level
(see Fig. 5).

The pointlike quark-photon is simply given by

⇤(PL)µ(p, p0) =


1

6
+
⌧3
2

�
�µ, (19)

where 1
6 + ⌧3

2 is the quark charge operator. Projecting
onto flavour sectors the vertex is separated into two com-
ponents:

⇤(PL)µ(p, p0) =


eu

1 + ⌧3
2

+ ed
1� ⌧3

2

�
�µ, (20)

where eu and ed are the charges of the u and d quarks,
respectively.
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Figure 4. (Colour online) Inhomogeneous BSE whose solution
gives the quark-photon vertex, represented as the large shaded
oval. The small circle depicts the pointlike quark-photon
driving term of Eq. (19), whereas the shaded circles with the
double line represents the vector meson t-matrices.

In general the quark-photon vertex is dressed by q̄q
interactions in the vector channel and in the NJL model
this dressing is described by the corresponding inhomo-
geneous Bethe-Salpeter equation (see Fig. 4). From the
NJL Lagrangian of Eq. (1) the contributions to this ver-
tex come from the neutral vector mesons (⇢0 and !). In
the on-shell approximation for the external quarks, the
solution of the inhomogeneous Bethe-Salpeter equation
of Fig. 4 is

⇤(bse)µ(p, p0) =


1

6
F1!(q

2) +
⌧3
2
F1⇢(q

2)

�
�µ, (21)

where the dressed quark form factors are

F1!(⇢)(q
2) =

1

1 + 2G!(⇢) ⇧V V (q2)
. (22)

Note, with the Lagrangian of Eq. (1) the inhomogeneous
Bethe-Salpeter equation does not generate a Pauli form
factor for the dressed quarks. Again projecting into
flavour sectors gives

⇤(bse)µ(p, p0) =


F bse
1U (q2)

1 + ⌧3
2

+ F bse
1D (q2)

1� ⌧3
2

�
�µ,

(23)

where the dressed quark form factors are given by [27]

F bse
1U (Q2) =

1

6
F1!(Q

2) +
1

2
F1⇢(Q

2), (24)

F bse
1D (Q2) =

1

6
F1!(Q

2)� 1

2
F1⇢(Q

2). (25)

Finally we include pion loop corrections to the quark-
photon vertex, as illustrated in Fig. 5, which give a vertex
of the form

⇤µ(p, p0) = ⇤µ
U (p, p

0)
1 + ⌧3

2
+ ⇤µ

D(p, p0)
1� ⌧3

2
, (26)

where the flavour sector vertices (Q = U, D) read

⇤µ
Q(p, p

0) = �µ F1Q(q
2) +

i�µµq⌫
2M

F2Q(Q
2). (27)

Note that the pion cloud generates a Pauli form factor
for the dressed quarks and that in obtaining Eq. (27) we
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Figure 5. (Colour online) Pion cloud contribution to the quark-
photon vertex. The quark-photon interaction in the first two
diagrams, represented by the shaded ovals, is given by the
solution of the inhomogeneous BSE. The last diagram also
includes the pion form factor determined without the pion
cloud on the associated dressed quarks.

have assumed the external quark lines are on-shell. The
dressed quark form factors now read [27]

F1U = Z
⇥
1
6F1! + 1

2F1⇢

⇤
+ [F1! � F1⇢] f

q
1 + F1⇢f

⇡
1 ,
(28)

F1D = Z
⇥
1
6F1! � 1

2F1⇢

⇤
+ [F1! + F1⇢] f

q
1 � F1⇢f

⇡
1 ,
(29)

F2U = [F1! � F1⇢] f
q
2 + F1⇢f

⇡
2 , (30)

F2D = [F1! + F1⇢] f
q
2 � F1⇢f

⇡
2 , (31)

where for clarity we have dropped the explicit Q2 depen-
dence. The renormalization factor Z is given by

Z = 1 +
@⌃(p)

@/p

����
/p=M

, (32)

where ⌃(p) is the self-energy from the pion cloud on a
dressed quark:

⌃(p) = �
Z

d4k

(2⇡)4
�5 ⌧i S(p� k) �5 ⌧i ⌧⇡(k). (33)

Here the pion propagator is approximated by its pole
form

⌧⇡(k) !
i Z⇡

p2 �m2
⇡ + i✏

. (34)

The contributions of the pion cloud to the quark-
photon vertex are contained in the functions fq

i (Q
2) and

f⇡
i (Q

2) (i = 1, 2) of Eqs. (28)-(31). These body form
factors are associated with the second and third diagrams
in Fig. 5, which are respectively expressed as

⇤(q)µ
Q (p0, p) = �µ fq

1 (q
2) +

i�µ⌫q⌫
2M

fq
2 (q

2), (35)

⇤(⇡)µ
Q (p0, p) = �µ f⇡

1 (q
2) +

i�µ⌫q⌫
2M

f⇡
2 (q

2). (36)

The analytic expressions read

⇤(q)µ
Q (p0, p) =

Z
d4k

(2⇡)4
�5 iS(p

0 � k)�µ iS(p� k)�5 ⌧⇡(k),

(37)

M ⇤IR ⇤UV G⇡ G⇢ G! Z⇡ Z⇢ Z!

0.4 0.24 0.645 19.04 11.04 10.41 17.85 6.96 6.63

Table I. Parameters of the model together with the e↵ective
couplings computed from Eqs. (12)-(13). The masses are in
units of GeV, the Lagrangian couplings in units of GeV�2 and
the e↵ective couplings are dimensionless.

⇤(⇡)µ
Q (p0, p) = Z�1

⇡ (p0 + p)µ F (PL)
⇡ (q2)

⇥
Z

d4k

(2⇡)4
�5 ⌧⇡(p

0 � k) ⌧⇡(p� k) �5 iS(k), (38)

where F (PL)
⇡ (q2) is the pion form factor determined with

a pointlike quark-photon vertex.
For the full calculation of the ⇢-meson form factors

we use Eq. (18) and the quark-photon vertex given in
Eq. (26). For the ⇢+ form factors this gives

Fi⇢+(Q2) =
⇥
F1U (Q

2)� F1D(Q2)
⇤
fV
i (Q2)

+
⇥
F2U (Q

2)� F2D(Q2)
⇤
fT
i (Q2), (39)

where i = 1, 2, 3 indicates each of the three form factors
of Eq. (14). The body form factors fV

i are associated
with the vector part (�µ) of the quark-photon vertex in
Eq. (27), while fT

i are the body form factors associated
with the tensor coupling ( i�

µ⌫q⌫
2M ) in Eq. (27). To ob-

tain the ⇢-meson form factors that result only from the
inhomogeneous BSE quark-photon vertex we then sim-
ply set Z = 1 and the pion cloud contributions (fq

1 (Q
2),

f⇡
1 (Q

2), etc) to zero. Finally, the ⇢ form factors for a
pointlike quark-photon vertex are then obtained by setting
F1! = F1⇢ = 1. Note, all loop integrals are regularized
using the proper-time scheme, with both an infrared and
ultraviolet cuto↵, except those of Eqs. (33), (37) and (38),
where we take the infrared cuto↵ (⇤IR) to zero as the
pion should not be confined.

IV. RESULTS

The parameters of our model are the dressed quark
mass M ; the regularization cuto↵s ⇤UV and ⇤IR; and the
Lagrangian couplings G⇡, G⇢ and G!. For consistency
with previous work we set M = 0.4 GeV (in the physical
limit: m⇡ = 140MeV) and ⇤IR = 0.24GeV [27, 30, 42].
The ultraviolet cuto↵ ⇤UV is fit to the physical value of the
pion decay constant and the couplings G⇡, G⇢, and G! are
fit to the physical masses of the ⇡, ⇢ and ! mesons using
Eqs. (8)-(10). The values of these parameters, together
with the quark-meson couplings of Eqs. (12)-(13), are
given in Tab. I.

Our purpose here is to compare results within this NJL
model with other calculations, for example, constituent
quark models [6–14], QCD sum rules [15–18], Dyson-
Schwinger equations [19–22] and the recent lattice QCD
studies [25, 26]. We first focus on static electromagnetic
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Reference hr2Ci(fm2) µ⇢ (µN ) Q⇢ (fm2)

This work 0.67 3.14 -0.070

Garcia Gudiño [6] – 2.6(6) –

Cardarelli [8] 0.35 2.76 -0.024

De Melo [9] 0.37 2.61 -0.052

Melikhov [11] 0.33 2.87 -0.031

Jaus [12] – 2.23 -0.022

Choi [13] – 2.34 -0.028

Biernat [14] – 2.68 -0.027

Samsonov [16] – 2.4(4) –

Aliev [18] – 2.8(6) –

Hawes [19] 0.37 3.28 -0.055

Bhagwat [20] 0.54 2.54 -0.026

Roberts [21] 0.31 2.14 -0.037

Pitschmann [22] – 2.13 –

Owen [25] 0.670(68) 2.613(97) -0.0452(61)

Shultz [26] 0.30(6) 2.00(9) -0.020(4)

Table II. Comparison of the ⇢+ charge radius, magnetic mo-
ment and quadrupole moment for various theoretical ap-
proaches: phenomenological models [6], constituent quark
models [8, 9, 11–14], QCD sum rules [16, 18], Dyson Schwinger
equations [19–22] and lattice QCD [25, 26]. The lightest pion
mass used in the lattice calculation in Ref. [25] is m2

⇡ = 0.026
GeV2, whereas for Ref. [26] it is m2

⇡ = 0.49 GeV2.

quantities for the ⇢+ meson and consider the magnetic
moment (µ⇢), quadrupole moment (Q⇢) and rms charge
radius (hr2Ci). These observables are defined by the Sachs
form factors given in Eqs. (15)-(17), where the magnetic
moment in nuclear magnetons (µN ) is given by µ⇢ =
GM (0)MN

m⇢
, with MN the physical nucleon mass and (for

comparison with lattice data) m⇢ is the ⇢ mass evaluated
at a particular pion mass; the quadrupole moment in
units of e/m2

⇢ is given by Q⇢ = GQ(0); and finally the
charge radius is defined by

⌦
r2C

↵
= �6

@GC(Q2)

@Q2

����
Q2=0

. (40)

In Tab. II we summarize results for the hr2Ci, µ⇢ and Q⇢

of the ⇢+ from various theoretical approaches, together
with our calculations using the most sophisticated quark-
photon vertex of Eq. (26) (BSE + pion cloud). In general
including the dressing of the quark-photon vertex by the
BSE and the pion cloud increases the magnitude of µ⇢ by
24%, Q⇢ by 22% and hr2Ci by 16% [27].

In comparing our results with lattice QCD we focus
on the lattice simulation from Ref. [25], as they extend
to the lightest pion mass, namely, m⇡ = 161MeV. Our
computations as functions of m2

⇡ are performed by keep-
ing the regularization parameters (⇤IR and ⇤UV ) and
the couplings (G⇡, G⇢ and G!) fixed, and varying the
current quark mass that enters the gap equation. Results
for the ⇢ mass as a function of m2

⇡ (or equivalently the
current quark mass) are presented in Fig. 6, where we

0.7
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0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
⇢
(
G
e
V
)

m2
⇡ (GeV

2
)

NJL

lattice QCD

Figure 6. (Colour online) NJL model results for the ⇢-meson
mass versus m2

⇡. Comparison is made with lattice results from
Ref. [25].

find remarkable agreement between our NJL calculation
and the lattice results of Ref. [25].
At the physical pion mass our values for hr2Ci (see

Tab. II) di↵er significantly from the constituent quark
models, one of the Dyson-Schwinger calculations and the
result quoted in the lattice QCD computation of Ref. [26].
Better agreement is seen with the Dyson-Schwinger equa-
tion calculation of Ref. [20]. Our result for hr2Ci is however
very similar to the lattice QCD value obtained in Ref. [25]
for a pion mass of around 161 MeV. We see that in Fig. 7
their hr2Ci lies around 0.67 fm2, possibly reaching 0.7 fm2

in the physical limit. On the other hand the lattice QCD
simulation of Ref. [26] uses a very large pion mass of 700

0
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i
(
f
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2
)

m2
⇡ (GeV

2
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BSE+Pion Cloud
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Figure 7. (Colour online) The squared charge radius hr2Ci for
the ⇢+ meson computed using the three levels of sophistica-
tion for the quark-photon vertex: pointlike (PL), using the
inhomogeneous BSE (BSE) and including the pion cloud (BSE
+ pion cloud). Comparison is made with lattice results from
Ref. [25].
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versus m2
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Figure 9. (Colour online) The ⇢+ quadrupole moment (Q⇢)
versus m2

⇡. The curves have the same conventions as Fig. 7.

MeV, which explains its lower value for hr2Ci, evident from
the m2

⇡ dependence of the lattice points in Fig. 7. The
dependence of hr2Ci on m2

⇡ in our NJL calculation, once
the inhomogeneous BSE and pion cloud contributions
have been included, shows remarkable agreement with the
lattice results of Ref. [25]. One sees that the pion cloud
contributions have become negligible for m2

⇡ & 0.4GeV2.

For the ⇢+ magnetic moment (µ⇢) the values obtained
by the constituent quark models are consistently smaller
than our result of µ⇢ = 3.14µN , the closest being µ⇢ =
2.87µN from Ref. [11]. The earlier Dyson-Schwinger
equation study in Ref. [19] shows good agreement with
our work. For the lattice simulation of Ref. [25] the
discrepancy with our result is sizeable near the physical
limit. However, the evolution of our result with m2

⇡ shown
in Fig. 8 is in good agreement with the lattice QCD
calculations except at their lightest pion mass. Again, as
in the case of hr2Ci, the e↵ect of the large m⇡ in Ref. [26]
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Figure 10. (Colour online) The ⇢+ Sachs form factors as a
functions of m2

⇡ at Q2 = 0.16 GeV2. The curves have the
same conventions as Fig. 7.

is to produce a small value of µ⇢, as evident from Fig. 8.
Finally we find a large quadrupole moment comparable

to the Dyson-Schwinger equation results of Roberts et
al. [21] and Hawes et al. [19]. The lattice QCD result of
Ref. [25] is approximately ⇠30% smaller than our result
near the physics point, as illustrated in Fig. 9. However,
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as a hypothesis for the di↵erence we suggest that it may be
worthwhile to investigate the e↵ect of the lack of spherical
symmetry on the lattice simulation, considering that the
quadrupole moment reflects the shape of the ⇢.

Comparison with the lattice simulation of Ref. [25] for
the evolution of the ⇢+ Sachs form factors with m2

⇡, at
a fixed Q2 = 0.16GeV2, is made in Figs. 10. The charge
form factor, GC , is in good agreement with the lattice
QCD points, when both the inhomogeneous BSE and
pion cloud dressing are included. On the other hand, for
the magnetic form factor GM , the BSE results alone have
better agreement with lattice and the pion cloud causes
an overestimate. The deviations are still small however,
considering the simplicity of the calculation. The devia-
tion from the lattice simulation data for GQ is possibly
explained by the same reason behind the disagreement
with Q⇢, that is, the lack of spherical symmetry in the
lattice simulation.

A final comparison is made in Fig. 11 for the Sachs form
factors as a function of Q2 for a pion mass of m2

⇡ = 0.49
GeV2, where the lattice results are from Ref. [26]. We
find that our model qualitatively describes the ⇢+ form
factors obtained from the lattice computation. Once again
the addition of the pion cloud causes an overestimate of
GM (Q2) and the magnitude of GQ(Q2) also appears too

large.

V. CONCLUSIONS

We computed the electromagnetic form factors of the
⇢+ meson using an NJL model that simulates aspects of
quark confinement. The quark-photon vertex is studied in
three levels of sophistication: pointlike dressed quark, via
the inhomogeneous BSE and also including corrections
from a pion cloud. The results are qualitatively in good
agreement with the recent lattice QCD computations.
The main level of disagreement comes from the

quadrupole moment and the corresponding form factor.
We suggest that lattice QCD studies of this type should
look at the possible e↵ects of the lack of spherical sym-
metry of a cubic lattice in the quadrupole moments and
form factors. It would certainly be helpful to have further
lattice studies over a range of pion masses and momen-
tum transfers. Experimental measurements would also
be extremely valuable.
Therefore, the present work on the ⇢-meson structure

and the progress in the computation of the electromag-
netic form factors of the ⇡ and K, including the pion
cloud, reported in Ref. [30], support the importance of
the model as a tool to describe hadronic structure. In
addition, the NJL model is a quantum field theory where
calculations are relatively straightforward and it gives
good results when compared to more sophisticated meth-
ods that require much more resources, such as lattice
QCD. These advantages are useful in order to perform
larger calculations in problems such as the description of
hadrons in the nuclear medium, as required, for example,
to explore the properties of neutron stars. In such cases
the NJL model serves as a very useful tool to guide possi-
ble future computations of lattice QCD and other more
sophisticated approaches.
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[40] W. Bentz, I. C. Cloët, T. Ito, A. W. Thomas

and K. Yazaki, Prog. Part. Nucl. Phys. 61, 238
(2008) [arXiv:0711.0392 [nucl-th]].

[41] H. H. Matevosyan, W. Bentz, I. C. Cloët and A. W.
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