
1 4-vectors, Lorentz transformation

4-vector (example):

xµ =
(
x0, x1, x2.x3

)
≡
(
x0, ~x

)
(1.1)

Here x0 = ct, and the index µ = 0, 1, 2, 3.

xµ is a ”space-time” 4-vector.

Lorentz transformation in x direction, velocity ~v = (v, 0, 0):

x
′0 =

x0 − v
c
x1√

1− v2/c2

x
′1 =

x1 − v
c
x0√

1− v2/c2

x
′2 = x2

x
′3 = x3

In matrix notation: 
x

′0

x
′1

x
′2

x
′3

 =


γ −γ v

c
0 0

−γ v
c

γ 0 0
0 0 1 0
0 0 0 1




x0

x1

x2

x3

 (1.2)

Here γ = 1/
√

1− v2/c2.

Compact notation of Lorentz transformation:

x
′µ =

3∑
ν=0

Λµ
ν(~v)xν ≡ Λµ

ν(~v)xν (1.3)

Lorentz matrix Λµ
ν(~v) given in (1.2). It is a symmetric matrix.

µ = (0, 1, 2, 3) labels the rows, and ν = (0, 1, 2, 3) labels the columns.

In Eq.(1.3), µ is fixed, and summation over ν is implied (”Einstein convention”).

Any quantity aµ which transforms like (1.3) is called a 4-vector.

xµ of Eq.(1.1) is called ”contravariant 4-vector”.

The ”covariant 4-vector” xµ is defined as

xµ = (x0, x1, x2.x3) ≡
(
x0,−~x

)
(1.4)
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Here x0 = x0 = ct, xi = −xi (i = 1, 2, 3).

Connection between xµ and xµ is given by

xµ =
3∑

ν=0

gµν xν ≡ gµν xν

with the ”metric tensor”

gµν =


1
−1

−1
−1

 (1.5)

Note: xµ and xµ are same for µ = 0, and have different sign for µ = 1, 2, 3.

Same rule holds for matrices (tensors). For example,

Λ ν
µ (~v) =


γ γ v

c
0 0

γ v
c

γ 0 0
0 0 1 0
0 0 0 1

 , gµν =


1

1
1

1

 (1.6)

Note: The first index labels the rows, and the second index labels the columns of a matrix.

The Lorentz transformation (1.3) can be expressed also for covariant 4-vectors:

x′µ =
3∑

ν=0

Λ ν
µ (~v)xν (1.7)

Comparing (1.2) and (1.6), we see that

Λ ν
µ (~v) = Λν

µ(−~v)

Important property of Lorentz matrix:

∑
µ

Λ ν
µ (~v) Λµ

σ(~v) =
∑
µ

Λν
µ(−~v) Λµ

σ(~v) =


1

1
1

1

 = gνσ (1.8)

Definition of ”scalar product” (S) of two 4-vectors a and b:

S =
∑
µ

aµ b
µ ≡ a · b = a0 b0 − ~a ·~b
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Because of (1.8), this is invariant under Lorentz transformations:

S ′ = a′µ b
′µ =

(
Λ ν
µ aν

)
(Λµ

σb
σ) =

(
Λ ν
µ Λµ

σ

)
aν b

σ = gνσaν b
σ = aν b

ν = S

Example: x · p = x0 p0 − ~x · ~p is Lorentz invariant.

Other example of 4-vector: Momentum 4-vector

pµ =
(
p0, ~p

)
=

(
Ep
c
, ~p

)
Here Ep =

√
(pc)2 + (mc2)2 is the energy of a free particle with momentum p = |~p|.

Lorentz transformation of the ”4-derivative”

∂

∂xµ
=

(
∂

∂x0
, ~∇
)

=

(
1

c

∂

∂t
, ~∇
)

(1.9)

(1) The inverse Lorentz transformation of x is

xν = Λν
µ(−~v)x

′µ

From this we obtain

∂xν

∂x′µ
= Λν

µ(−~v) = Λ ν
µ (~v)

(2) Therefore, using the chain rule,

∂

∂x′µ
=
∑
ν

∂xν

∂x′µ

∂

∂xν
=
∑
ν

Λ ν
µ (~v)

∂

∂xν

Therefore the 4-derivative ∂
∂xν

transforms like xν , i.e., like a covariant 4-vector !

We therefore define the ”covariant derivative” as

∂µ ≡
∂

∂xµ
=

(
∂

∂x0
, ~∇
)

=

(
1

c

∂

∂t
, ~∇
)

Then

∂′µ = Λ ν
µ (~v) ∂ν
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The ”contravariant derivative” is then

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
,−~∇

)
Its Lorentz transformation is the same as for xµ, i.e.,

∂
′µ = Λµ

ν(~v) ∂
′ν

The 4-divergence of a 4-vector a is defined by

∂µa
µ =

∂a0

∂x0
+ ~∇ · ~a

This is Lorentz invariant.

The d’Alembert operator is defined by

∂2 = ∂µ ∂
µ = � =

∂2

∂x02
−∆

Here ∆ is the Laplace operator. The d’Alembert operatror is Lorentz invariant.
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