1 4-vectors, Lorentz transformation

4-vector (example):

$$
\begin{equation*}
x^{\mu}=\left(x^{0}, x^{1}, x^{2} \cdot x^{3}\right) \equiv\left(x^{0}, \vec{x}\right) \tag{1.1}
\end{equation*}
$$

Here $x^{0}=c t$, and the index $\mu=0,1,2,3$.
x^{μ} is a "space-time" 4 -vector.
Lorentz transformation in x direction, velocity $\vec{v}=(v, 0,0)$:

$$
\begin{aligned}
x^{\prime 0} & =\frac{x^{0}-\frac{v}{c} x^{1}}{\sqrt{1-v^{2} / c^{2}}} \\
x^{\prime 1} & =\frac{x^{1}-\frac{v}{c} x^{0}}{\sqrt{1-v^{2} / c^{2}}} \\
x^{\prime 2} & =x^{2} \\
x^{\prime 3} & =x^{3}
\end{aligned}
$$

In matrix notation:

$$
\left(\begin{array}{l}
x^{\prime 0} \tag{1.2}\\
x^{\prime 1} \\
x^{\prime 2} \\
x^{\prime 3}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \frac{v}{c} & 0 & 0 \\
-\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)
$$

Here $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$.
Compact notation of Lorentz transformation:

$$
\begin{equation*}
x^{\prime \mu}=\sum_{\nu=0}^{3} \Lambda_{\nu}^{\mu}(\vec{v}) x^{\nu} \equiv \Lambda_{\nu}^{\mu}(\vec{v}) x^{\nu} \tag{1.3}
\end{equation*}
$$

Lorentz matrix $\Lambda^{\mu}{ }_{\nu}(\vec{v})$ given in (1.2). It is a symmetric matrix.
$\mu=(0,1,2,3)$ labels the rows, and $\nu=(0,1,2,3)$ labels the columns.
In Eq.(1.3), μ is fixed, and summation over ν is implied ("Einstein convention").
Any quantity a^{μ} which transforms like (1.3) is called a 4 -vector.
x^{μ} of Eq.(1.1) is called "contravariant 4 -vector".
The "covariant 4 -vector" x_{μ} is defined as

$$
\begin{equation*}
x_{\mu}=\left(x_{0}, x_{1}, x_{2} \cdot x_{3}\right) \equiv\left(x^{0},-\vec{x}\right) \tag{1.4}
\end{equation*}
$$

Here $x_{0}=x^{0}=c t, x_{i}=-x^{i}(i=1,2,3)$.
Connection between x^{μ} and x_{μ} is given by

$$
x^{\mu}=\sum_{\nu=0}^{3} g^{\mu \nu} x_{\nu} \equiv g^{\mu \nu} x_{\nu}
$$

with the "metric tensor"

$$
g^{\mu \nu}=\left(\begin{array}{llll}
1 & & & \tag{1.5}\\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)
$$

Note: x^{μ} and x_{μ} are same for $\mu=0$, and have different sign for $\mu=1,2,3$.
Same rule holds for matrices (tensors). For example,

$$
\Lambda_{\mu}{ }^{\nu}(\vec{v})=\left(\begin{array}{cccc}
\gamma & \gamma \frac{v}{c} & 0 & 0 \tag{1.6}\\
\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad g^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

Note: The first index labels the rows, and the second index labels the columns of a matrix.

The Lorentz transformation (1.3) can be expressed also for covariant 4-vectors:

$$
\begin{equation*}
x_{\mu}^{\prime}=\sum_{\nu=0}^{3} \Lambda_{\mu}^{\nu}(\vec{v}) x_{\nu} \tag{1.7}
\end{equation*}
$$

Comparing (1.2) and (1.6), we see that

$$
\Lambda_{\mu}{ }^{\nu}(\vec{v})=\Lambda^{\nu}{ }_{\mu}(-\vec{v})
$$

Important property of Lorentz matrix:

$$
\sum_{\mu} \Lambda_{\mu}^{\nu}(\vec{v}) \Lambda_{\sigma}^{\mu}(\vec{v})=\sum_{\mu} \Lambda_{\mu}^{\nu}(-\vec{v}) \Lambda_{\sigma}^{\mu}(\vec{v})=\left(\begin{array}{cccc}
1 & & & \tag{1.8}\\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)=g_{\sigma}^{\nu}
$$

Definition of "scalar product" (S) of two 4 -vectors a and b :

$$
S=\sum_{\mu} a_{\mu} b^{\mu} \equiv a \cdot b=a^{0} b^{0}-\vec{a} \cdot \vec{b}
$$

Because of (1.8), this is invariant under Lorentz transformations:

$$
S^{\prime}=a_{\mu}^{\prime} b^{\prime \mu}=\left(\Lambda_{\mu}^{\nu} a_{\nu}\right)\left(\Lambda_{\sigma}^{\mu} \sigma^{\sigma}\right)=\left(\Lambda_{\mu}^{\nu} \Lambda_{\sigma}^{\mu}\right) a_{\nu} b^{\sigma}=g_{\sigma}^{\nu} a_{\nu} b^{\sigma}=a_{\nu} b^{\nu}=S
$$

Example: $x \cdot p=x^{0} p^{0}-\vec{x} \cdot \vec{p}$ is Lorentz invariant.

Other example of 4-vector: Momentum 4-vector

$$
p^{\mu}=\left(p^{0}, \vec{p}\right)=\left(\frac{E_{p}}{c}, \vec{p}\right)
$$

Here $E_{p}=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$ is the energy of a free particle with momentum $p=|\vec{p}|$.

Lorentz transformation of the " 4 -derivative"

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}=\left(\frac{\partial}{\partial x^{0}}, \vec{\nabla}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right) \tag{1.9}
\end{equation*}
$$

(1) The inverse Lorentz transformation of x is

$$
x^{\nu}=\Lambda^{\nu}{ }_{\mu}(-\vec{v}) x^{\prime \mu}
$$

From this we obtain

$$
\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}=\Lambda_{\mu}^{\nu}(-\vec{v})=\Lambda_{\mu}^{\nu}(\vec{v})
$$

(2) Therefore, using the chain rule,

$$
\frac{\partial}{\partial x^{\prime \mu}}=\sum_{\nu} \frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \frac{\partial}{\partial x^{\nu}}=\sum_{\nu} \Lambda_{\mu}^{\nu}(\vec{v}) \frac{\partial}{\partial x^{\nu}}
$$

Therefore the 4 -derivative $\frac{\partial}{\partial x^{\nu}}$ transforms like x_{ν}, i.e., like a covariant 4 -vector !

We therefore define the "covariant derivative" as

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}=\left(\frac{\partial}{\partial x^{0}}, \vec{\nabla}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

Then

$$
\partial_{\mu}^{\prime}=\Lambda_{\mu}^{\nu}(\vec{v}) \partial_{\nu}
$$

The "contravariant derivative" is then

$$
\partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\vec{\nabla}\right)
$$

Its Lorentz transformation is the same as for x^{μ}, i.e.,

$$
\partial^{\prime \mu}=\Lambda_{\nu}^{\mu}(\vec{v}) \partial^{\prime \nu}
$$

The 4 -divergence of a 4 -vector a is defined by

$$
\partial_{\mu} a^{\mu}=\frac{\partial a^{0}}{\partial x^{0}}+\vec{\nabla} \cdot \vec{a}
$$

This is Lorentz invariant.
The d'Alembert operator is defined by

$$
\partial^{2}=\partial_{\mu} \partial^{\mu}=\square=\frac{\partial^{2}}{\partial x^{02}}-\Delta
$$

Here Δ is the Laplace operator. The d'Alembert operatror is Lorentz invariant.

