3 Wave equations for particles with spin 1

The wave equations for the massless $(m=0)$ spin- 1 field are the Maxwell equations, and for the massive ($m>0$) spin-1 field the Proca equations.

3.1 Maxwell equations (in vacuum)

The first set of Maxwell equations for the electric and magnetic fields is

$$
\begin{align*}
\vec{\nabla} \times \vec{E}+\dot{\vec{B}} & =0 \\
\vec{\nabla} \cdot \vec{B} & =0 \tag{3.1}
\end{align*}
$$

The second set of Maxwell equations is

$$
\begin{align*}
\vec{\nabla} \times \vec{B}-\dot{\vec{E}} & =0 \\
\vec{\nabla} \cdot \vec{E} & =0 \tag{3.2}
\end{align*}
$$

The 4 -vector potential $A^{\mu}=(\phi, \vec{A})$ is defined by the equations (see Sect. 10 or RQM1)

$$
\begin{equation*}
\vec{E}=-\vec{\nabla} \phi-\dot{\vec{A}}, \quad \vec{B}=\vec{\nabla} \times \vec{A} \tag{3.3}
\end{equation*}
$$

Then the first set of equations (3.1) is satisfied automatically!
In order to express the equations (3.2) in terms of the vector potential, we use the field strength tensor $F^{\mu \nu}$ defined by

$$
\begin{equation*}
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} \tag{3.4}
\end{equation*}
$$

The components $F^{\mu \nu}$ are related to the electric and magnetic fields by (see Eq.(3.3))

$$
F^{i 0}=-\nabla^{i} A^{0}-\partial^{0} A^{i}=E^{i}, \quad F^{i j}=\partial^{i} A^{j}-\partial^{j} A^{i}=-(\vec{\nabla} \times \vec{A})^{k}=-B^{k}
$$

$[(i, j, k)$ is a cyclic permutation of $(1,2,3)$.$] Then the second set of Maxwell equations (3.2) can be$ expressed in the compact form

$$
\begin{equation*}
\partial_{\nu} F^{\nu \mu}=0 \Leftrightarrow \square A^{\mu}-\partial^{\mu}(\partial \cdot A)=0 \tag{3.5}
\end{equation*}
$$

because of: $\partial_{i} F^{i 0}=0 \Rightarrow \vec{\nabla} \cdot \vec{E}=0$ and $\partial_{0} F^{0 i}+\partial_{j} F^{j i}=0 \Rightarrow-\dot{E}^{i}+\left(\nabla^{j} B^{k}-\nabla^{k} B^{j}\right)=0$, which gives $\vec{\nabla} \times \vec{B}-\dot{\vec{E}}=0$. One can choose a gauge ("Lorentz gauge") where $\partial \cdot A=0$, then (3.5) simplifies to $\square A^{\mu}=0$.

3.2 Massive spin-1 field equation (Proca equation)

If we add a "mass term" (similar to the Klein-Gordon equation) $m^{2} A^{\mu}$ to the Maxwell equation (3.5), we get the Proca equation

$$
\begin{align*}
\partial_{\nu} F^{\nu \mu}+m^{2} A^{\mu} & =0 \\
\Rightarrow \square A^{\mu}-\partial^{\mu}(\partial \cdot A)+m^{2} A^{\mu} & =0 \tag{3.6}
\end{align*}
$$

If we apply ∂_{μ} to this equation, we get the relation $\partial_{\mu} A^{\mu}=0$. For the massless case (Maxwell equation), this was only a choice of gauge, but for the massive case it must be satisfied. Therefore the Proca equations (3.6) are equivalent to the following set of equations:

$$
\begin{align*}
\left(\square+m^{2}\right) A^{\mu} & =0 \tag{3.7}\\
\partial_{\mu} A^{\mu} & =0 \tag{3.8}
\end{align*}
$$

Relations like (3.8) are called constraints. Because of the constraint, there are three independent components (degrees of freedom) of the field A^{μ}, namely 4 (components of A^{μ}) - 1 (constraint) $=3$ (degrees of freedom), as it should be for a massive spin-1 particle: The component of the spin vector along the "spin quantization axis" (we will use the z-axis) has three possible values $\lambda=-1,0,+1$.

Plane wave solutions of the Proca equation:
The solutions with definite momentum \vec{p} and spin component $\lambda=-1,0,+1$ are

$$
\begin{equation*}
A^{\mu}(x)=\varepsilon^{\mu}(\vec{p}, \lambda) e^{-i(E t-\vec{p} \cdot \vec{x})} \tag{3.9}
\end{equation*}
$$

Here $E= \pm \sqrt{\vec{p}^{2}+m^{2}}= \pm E_{p}$ because of (3.7). Similar to the Klein-Gordon case, we call the solution with $E=+E_{p}$ the "positive frequency solution", and the other with $E=-E_{p}$ the "negative frequency solution". (We will show later that both solutions have positive energy.) $\varepsilon^{\mu}(\vec{p}, \lambda)$ is the spin part of the wave function, called the "polarization 4-vector", which must satisfy the constraint (from Eq.(3.8))

$$
\begin{equation*}
p_{\mu} \varepsilon^{\mu}(\vec{p}, \lambda)=0 \tag{3.10}
\end{equation*}
$$

(i) In the rest frame of the particle $p_{\mu}=(m, \overrightarrow{0})$, the polarization vector has the form

$$
\begin{equation*}
\varepsilon^{\mu}(\vec{p}=0, \lambda)=\left(0, \vec{\epsilon}_{\lambda}\right) \tag{3.11}
\end{equation*}
$$

Here the set of three vectors $\left(\vec{\epsilon}_{-1}, \vec{\epsilon}_{0}, \vec{\epsilon}_{1}\right)$ is not determined by the Proca equation, but can be chosen as eigenvectors of the z-component of the spin operator $\left(\hat{S}_{3}\right)$ with eigenvalues $-1,0,+1$. Here we use the following spin matrices $\hat{\vec{S}}=\left(\hat{S}_{1}, \hat{S}_{2}, \hat{S}_{3}\right)$ for a spin-1 particle ("adjoint representation"): $\left(\hat{S}_{i}\right)_{j k}=-i \epsilon_{i j k}$, which satisfy the commutation relations $\left[\hat{S}_{i}, \hat{S}_{j}\right]=i \epsilon_{i j k} \hat{S}_{k}$. The explicit forms are

$$
\hat{S}_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.12}\\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \hat{S}_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), \quad \hat{S}_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The eigenvectors of \hat{S}_{3} with eigenvalues $\lambda=-1,0,+1$ are then obtained as

$$
\begin{equation*}
\vec{\epsilon}_{-1}=\frac{1}{\sqrt{2}}(1,-i, 0), \quad \vec{\epsilon}_{0}=(0,0,1), \quad \vec{\epsilon}_{+1}=\frac{-1}{\sqrt{2}}(1, i, 0) \tag{3.13}
\end{equation*}
$$

They satisfy the orthogonality and completeness relations

$$
\begin{equation*}
\vec{\epsilon}_{\lambda^{\prime}}^{\dagger} \cdot \vec{\epsilon}_{\lambda}=\delta_{\lambda^{\prime} \lambda}, \quad \sum_{\lambda} \epsilon_{\lambda}^{i} \epsilon_{\lambda}^{j \dagger}=\delta_{i j} \tag{3.14}
\end{equation*}
$$

(ii) In the frame where the particle has momentum \vec{p}, we must apply a Lorentz transformation with velocity $\vec{v}=-\vec{p} / E_{p}$ to the 4 -vectors (3.11):

$$
\begin{equation*}
\varepsilon^{\mu}(\vec{p}, \lambda)=\Lambda_{\nu}^{\mu}(\vec{v}) \varepsilon_{\nu}(\vec{p}=0, \lambda)=\left(\frac{\vec{p} \cdot \vec{\epsilon}_{\lambda}}{m}, \vec{\epsilon}_{\lambda}+\frac{\vec{p}\left(\vec{p} \cdot \vec{\epsilon}_{\lambda}\right)}{m\left(E_{p}+m\right)}\right) \tag{3.15}
\end{equation*}
$$

By construction, they satisfy the following relations (see (3.10) and (3.14)):

$$
\begin{align*}
p_{\mu} \varepsilon^{\mu}(\vec{p}, s)=0, \quad \varepsilon^{\mu *}\left(p, \lambda^{\prime}\right) \varepsilon_{\mu}(p, \lambda) & =-\delta_{\lambda \lambda^{\prime}}, \quad \varepsilon_{\mu}(\vec{p}, \lambda)=(-1)^{\lambda} \varepsilon_{\mu}^{*}(\vec{p},-\lambda) \\
\sum_{\lambda} \varepsilon^{\mu *}(p, \lambda) \varepsilon^{\nu}(p, \lambda) & =-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m^{2}} \tag{3.16}
\end{align*}
$$

3.3 Lagrangian and Hamiltonian for the Proca equation

The Proca equations (3.7), (3.8) follow from the following Lagrangian density:

$$
\begin{align*}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{m^{2}}{2} A_{\mu} A^{\mu} \\
& =-\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\mu} A^{\nu}\right)+\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\nu} A^{\mu}\right)+\frac{m^{2}}{2} A^{2} \tag{3.18}
\end{align*}
$$

Check this:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)} & =-\partial^{\mu} A^{\nu}+\partial^{\nu} A^{\mu}=-F^{\mu \nu} \\
\frac{\partial \mathcal{L}}{\partial A_{\nu}} & =m^{2} A^{\nu}
\end{aligned}
$$

and therefore the Euler-Lagrange equation for A^{ν}

$$
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=\frac{\partial \mathcal{L}}{\partial A_{\nu}}
$$

becomes the Proca equation (3.6).

Using the definition of the field strength tensor (see Eq.(3.4)), the Lagrangian density (3.18) can be expressed as

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)+\frac{m^{2}}{2}\left(A_{0}^{2}-\vec{A}^{2}\right) \tag{3.19}
\end{equation*}
$$

where (see Eq.(3.3))

$$
\vec{E}=-\vec{\nabla} A_{0}-\dot{\vec{A}}, \quad \vec{B}=\vec{\nabla} \times \vec{A}
$$

The momenta conjugate to A_{0} and \vec{A} are then obtained as

$$
\begin{equation*}
\Pi^{0} \equiv \frac{\partial \mathcal{L}}{\partial \dot{A}_{0}}=0, \quad \vec{\Pi} \equiv \frac{\partial \mathcal{L}}{\partial \dot{\vec{A}}}=-\vec{E} \tag{3.20}
\end{equation*}
$$

Then the Hamiltonian density becomes

$$
\begin{align*}
\mathcal{H} & =\Pi^{0} \dot{A}^{0}+\vec{\Pi} \cdot \dot{\vec{A}}-\mathcal{L}=-\vec{E} \cdot \dot{\vec{A}}-\mathcal{L} \\
& =\left(\vec{E}+\vec{\nabla} A_{0}\right) \cdot \vec{E}-\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)-\frac{m^{2}}{2}\left(A_{0}^{2}-\vec{A}^{2}\right) \\
& =\frac{1}{2}\left(\vec{E}^{2}+\vec{B}^{2}+m^{2} \vec{A}^{2}\right)-\frac{m^{2}}{2} A_{0}^{2}+\vec{E} \cdot \vec{\nabla} A_{0} \tag{3.21}
\end{align*}
$$

The field A^{0} can be eliminated by using the Proca field equation (first equation in 3.6) for $\mu=0$:

$$
\begin{equation*}
\partial_{i} F^{i 0}+m^{2} A^{0}=0 \Rightarrow \vec{\nabla} \cdot \vec{E}=-m^{2} A^{0} \tag{3.22}
\end{equation*}
$$

Then the last term in (3.21) can be written in the form

$$
\vec{E} \cdot \vec{\nabla} A_{0}=\vec{\nabla} \cdot\left(\vec{E} A_{0}\right)-A_{0}(\vec{\nabla} \cdot \vec{E})=\vec{\nabla} \cdot\left(\vec{E} A_{0}\right)+m^{2} A_{0}^{2}
$$

Finally, the Hamiltonian (3.21) becomes ${ }^{1}$

$$
\begin{equation*}
\mathcal{H}=\int \mathrm{d}^{3} x \mathcal{H}=\frac{1}{2} \int \mathrm{~d}^{3} x\left[\vec{E}^{2}+\vec{B}^{2}+m^{2}\left(A_{0}^{2}+\vec{A}^{2}\right)\right] \tag{3.23}
\end{equation*}
$$

This is positive definite, and therefore there are no negative energies for the Proca field. The independent (dynamical) fields are \vec{A} and \vec{E}, while A_{0} and \vec{B} should be expressed as

$$
A_{0}=-\frac{\vec{\nabla} \cdot \vec{E}}{m^{2}}, \quad \vec{B}=\vec{\nabla} \times \vec{A}
$$

In quantum field theory, the fields \vec{A} and \vec{E} become the dynamical quantum fields.

[^0]
[^0]: ${ }^{1}$ The total derivative $\vec{\nabla} \cdot\left(\vec{E} A_{0}\right)$ gives a surface term which vanishes after integration.

