3 Wave equations for particles with spin 1

The wave equations for the massless (m = 0) spin-1 field are the Maxwell equations, and for the

massive (m > 0) spin-1 field the Proca equations.

3.1 Maxwell equations (in vacuum)

The first set of Maxwell equations for the electric and magnetic fields is
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The second set of Maxwell equations is
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The 4-vector potential A* = (gb, A) is defined by the equations (see Sect. 10 or RQM1)

N—

F=-V¢-A,  B=VxA (3.3)

Then the first set of equations (3.1) is satisfied automatically!
In order to express the equations (3.2) in terms of the vector potential, we use the field strength tensor

F* defined by

Fr = ot AY — 9" A* (3.4)
The components F* are related to the electric and magnetic fields by (see Eq.(3.3))
FOo A P A =B FI— A — A = — (6 X E)k _ _pB
[(4, 4, k) is a cyclic permutation of (1,2,3).] Then the second set of Maxwell equations (3.2) can be
expressed in the compact form

0, F"" =0« 0A" — 9" (- A) =0 (3.5)

because of: 9;F© =0 = V-E =0 and 9 F% 4+ 0, Fi' = 0 = —Ei + (VIB* — V*B7) = 0, which gives
V x B — E = 0. One can choose a gauge (“Lorentz gauge”) where - A = 0, then (3.5) simplifies to
OA* = 0.




3.2 Massive spin-1 field equation (Proca equation)

If we add a “mass term” (similar to the Klein-Gordon equation) m?A* to the Maxwell equation (3.5),

we get the Proca equation

O, F"" +m* A" = 0
= 04" — 9" (0- A) + m?A* = 0 (3.6)

If we apply 0, to this equation, we get the relation 0,A* = 0. For the massless case (Maxwell
equation), this was only a choice of gauge, but for the massive case it must be satisfied. Therefore

the Proca equations (3.6) are equivalent to the following set of equations:

(O+m?) A" = 0 (3.7)

9, A" = 0 (3.8)

Relations like (3.8) are called constraints. Because of the constraint, there are three independent
components (degrees of freedom) of the field A* namely 4 (components of A*) - 1 (constraint) = 3

(degrees of freedom), as it should be for a massive spin-1 particle: The component of the spin vec-

tor along the “spin quantization axis” (we will use the z-axis) has three possible values A = —1,0, +1.

Plane wave solutions of the Proca equation:

The solutions with definite momentum p and spin component A = —1,0,+1 are
At () = e*(p, A) e P (3.9)

Here E = ++/p?> +m? = +E, because of (3.7). Similar to the Klein-Gordon case, we call the
solution with £/ = +E, the “positive frequency solution”, and the other with £/ = —E, the “negative
frequency solution”. (We will show later that both solutions have positive energy.) &*(p,\) is the

spin part of the wave function, called the “polarization 4-vector”, which must satisfy the constraint

(from Eq.(3.8))

pue’ (P A) =0 (3.10)
(i) In the rest frame of the particle p, = (m,0), the polarization vector has the form

EH(F=0,)) = (0,&) (3.11)



Here the set of three vectors (€_1, €, €1) is not determined by the Proca equation, but can be chosen
as eigenvectors of the z-component of the spin operator (5},) with eigenvalues —1,0,+1. Here we

use the following spin matrices S = <S’1,§2,§3> for a spin-1 particle (“adjoint representation”):

(S‘,) = —i€;jk, which satisfy the commutation relations [SZ, S*J] = ieiij’k. The explicit forms are
jk
X 00 0 R 0 0 2 R 0 — 0
S5=1 00 — |, S= 0O 00 ], S3=11¢ 0 0 (3.12)
0 ¢ 0 - 0 0 0 0 0
The eigenvectors of Sy with eigenvalues A = —1,0,+1 are then obtained as
3 ! (1,—i,0), & =1(0,0,1), & -1 (1,4,0) (3.13)
€1 = —= y 1, ) €0 = s Yy ) € = = 2 .
1 NG 0 +1 /5

They satisfy the orthogonality and completeness relations
€l - & =0, > el =4, (3.14)
A

(i) In the frame where the particle has momentum p, we must apply a Lorentz transformation with

velocity v = —p/E, to the 4-vectors (3.11):

. L p-é . P8
(P, N) = A (V) e, (PP=0,A) = (—, e+ —) (3.15
( m m(E, +m) )

By construction, they satisfy the following relations (see (3.10) and (3.14)):

pue(pys) =0, &, N)eu(p, ) = 0w, eu(@A) = (=) e (7, =)
(3.16)
> e (p N (p ) = —g™+ Py (3.17)
A m?
3.3 Lagrangian and Hamiltonian for the Proca equation
The Proca equations (3.7), (3.8) follow from the following Lagrangian density:
1 2
L= —pFu PP A,
1 v 1 v m2 2



Check this:
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and therefore the Euler-Lagrange equation for A”
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becomes the Proca equation (3.6).

Using the definition of the field strength tensor (see Eq.(3.4)), the Lagrangian density (3.18) can be

expressed as
L= % (EQ . §2) v % (Ag - fP) (3.19)
where (see Eq.(3.3))
E=-VA ~A, B=VxA
The momenta conjugate to Ay and A are then obtained as
0 _

Hozﬁzo, lM=—"~=-F (3.20)
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Then the Hamiltonian density becomes

—

N o= MA4T - A—L=-FE - A—¢
_ <E+6AO>-E—%<E2—§2>—%2<A3—£2>
- %(E2+§2+m2ﬁ2>—m72A3+E-6A0 (3.21)

The field A° can be eliminated by using the Proca field equation (first equation in 3.6) for p = 0:
OF° +m? A’ =0=V.-E=—m?A (3.22)
Then the last term in (3.21) can be written in the form
E-VA =V (EAO) ' (ﬁ-ﬁ) —V. (EAO) +m? A2
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Finally, the Hamiltonian (3.21) becomes *
H= /d%% = /d% [E’Q + B+ m’ (Ag + Aﬁﬂ (3.23)

This is positive definite, and therefore there are no negative energies for the Proca field. The inde-

pendent (dynamical) fields are Aand E , while Ay and B should be expressed as

_,‘E, B B B
AQI—V s B=VxA

m2

In quantum field theory, the fields A and E become the dynamical quantum fields.

IThe total derivative V - (E A0> gives a surface term which vanishes after integration.
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