
4 Spin 3/2 field (Rarita-Schwinger field)

We first try to get the solutions in momentum space (for definite momentum ~p and spin projection

s = −3/2,−1/2,+1/2,+3/2), and then discuss the wave equation which is satisfied by them.

If we use the Clebsch-Gordan coefficients1 to couple the (positive energy) spin-1/2 Dirac spinor

u(~p, s1) and the spin-1 polarization vector εµ(~p, s2) to give spin 3/2, we obtain

uµ(~p, s) =
∑
s1,s2

(
1

2
1, s1 s2|

3

2
s

)
u(~p, s1) ε

µ(~p, s2) (4.1)

Because this quantity has 4 Dirac spinor components and 4 vector (Lorentz) components, we can

call it a “vector-spinor”. By construction it satisfies the relation pµu
µ(~p, s) = 0 for fixed Dirac index

(see Eq.(3.10) of Sect. 3), and the Dirac equation (6p−m)uµ(~p, s) = 0 for fixed Lorentz index.

In the rest system, the vector-spinors (4.1) take the form (see Eq.(3.11) of Sect. 3)

uµ(~p = 0, s) = (0, ~u(~p = 0, s)) (4.2)

If the particle moves with momentum ~p, one can apply a Lorentz transformation to (4.2) with velocity

~v = −~p/Ep:

uµa(~p, s) = Λµ
ν(~v) Ŝab u

ν
b (~p = 0, s) (4.3)

where Λµ
ν is the usual Lorentz matrix which acts on the polarization 4-vector, and Ŝab is the spinor

Lorentz transformation 2 which acts on the Dirac spinor u. (Here a, b = 1, 2, 3, 4 are Dirac indices.)

Using the values for the Glebsch-Gordon coefficients, we can show the following relation:

~γ · ~u(~p = 0, s) = 0 (4.4)

In order to show this, we first write down the explicit form of the vector-spinors (4.2): In the rest

system, the polarization vectors have the form of Eq.(3.13) of Sect. 3, and the Dirac spinor has the

form u(~p = 0, s) =

(
χs
0

)
, where χs=+1/2 ≡ χ↑ =

(
1
0

)
and χs=−1/2 ≡ χ↓ =

(
0
1

)
. We then

1For the definition of the Clebsch-Gordan (angular momentum coupling) coefficients, see any textbook on quantum
mechanics.

2See Sect.8 of RQM1 for the form of the spinor Lorentz transformation.
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obtain from Eq.(4.1)

~u(~p = 0, s =
3

2
) = ~ε+1

(
χ↑
0

)
~u(~p = 0, s =

1

2
) =

1√
3
~ε+1

(
χ↓
0

)
+

√
2

3
~ε0

(
χ↑
0

)
~u(~p = 0, s = −1

2
) =

1√
3
~ε−1

(
χ↑
0

)
+

√
2

3
~ε0

(
χ↓
0

)
~u(~p = 0, s = −3

2
) = ~ε−1

(
χ↓
0

)
(4.5)

Then, to show (4.4), we can use ~γ =

(
0 ~σ
−~σ 0

)
, and

~σ · ~ε+1 = − 1√
2

(σ1 + iσ2) = −
√

2

(
0 1
0 0

)
≡ −
√

2σ+ ,

~σ · ~ε0 = σ3 =

(
1 0
0 −1

)
,

~σ · ~ε−1 =
1√
2

(σ1 − iσ2) =
√

2

(
0 0
1 0

)
≡
√

2σ−

Then we get:

~γ · ~u(~p = 0, s =
3

2
) =

(
−
√

2σ+χ↑
0

)
= 0

~γ · ~u(~p = 0, s =
1

2
) =

(
− 1√

6
σ+χ↓ +

√
2
3
σ3χ↑

0

)
= 0

~γ · ~u(~p = 0, s = −1

2
) =

(
1√
6
σ−χ↑ +

√
2
3
σ3χ↓

0

)
= 0

~γ · ~u(~p = 0, s = −3

2
) =

( √
2σ−χ↓

0

)
= 0

Therefore Eq.(4.4) is OK, i.e., in the rest system the relation

γµu
µ(~p = 0, s) = 0 (4.6)

holds. Then by using the Lorentz transformation (4.3), we can show that also for non-zero momentum

γµu
µ(~p, s) = (γµΛµ

ν(~v)) Ŝ(~v)uν(~p = 0, s)

=
(
Ŝ(~v)γνŜ(~v)−1

)
Ŝ(~v)uν(~p = 0, s) = Ŝ(~v) γνu

ν(~p = 0, s) = 0 (4.7)
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(In the second equality, we used Eq.(6.7) of RMQ1.) Therefore, the vector-spinor uµ(~p, s) satisfies

the constraint

γµu
µ(~p, s) = 0 (4.8)

We see that the vector spinor uµ(~p, s), defined in Eq.(4.1), satisfies the following set of equations:

(6p−m) uµ(~p, s) = 0 (4.9)

pµ u
µ(~p, s) = 0 (4.10)

γµ u
µ(~p, s) = 0 (4.11)

Count the number of independent components (degrees of freedom) of uµ:

• From the definition (4.1): 2 (from spin 1/2 spinor) × 4 (from polarization 4-vector εµ)

= 8 degrees of freedom

• 2 constraints from (4.10)

(because (4.10) holds for each of the 2 independent spin-1/2 components)

• 2 constraints from (4.11)

(because (4.11) holds for each of the 2 independent spin-1/2 components)

Therefore, there are 8− 2− 2 = 4 independent degrees of freedom, which correspond to spin 3/2. (A

particle with spin 3/2 can have 4 possible values of the spin component s = 3
2
, 1
2
,−1

2
,−3

2
.)

In coordinate space: If we multiply the plane wave e−i(Ept−~p·~x), we get the wave function in the form

ψµ(~x, t) = N(p)uµ(~p, s) e−i(Ept−~p·~x) (4.12)

where N(p) is a normalization factor. This wave function satisfies the following set of equations:

(i6∇ −m) ψµ(~x, t) = 0 (4.13)

∂µψ
µ(~x, t) = 0 (4.14)

γµ ψ
µ(~x, t) = 0 (4.15)

These are called the Rarita-Schwinger equations. Note that (4.13) is an equation of motion, and

(4.14) and (4.15) are constraints.
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Note: Like for the Proca equation, it is possible to give one equation of motion, from which the

constraint equations can be derived. (For the Proca equation, this was given by Eq.(3.6) of Sect. 3.)

This equation has the following form:

(εµνρσγ5γν∂ρ +mgµσ) ψσ(~x, t) = 0 (4.16)

Here εµνρσ is the antisymmetric Levi-Civita symbol. If we contact (4.16) with ∂µ and γµ, we obtain

the constraints (4.14) and (4.15) for a massive particle (m > 0).

5 Spin 2 field

A spin-2 particle with spin component λ = −2,−1, 0,+1,+2 can be described by a symmetric Lorentz

tensor εµν(~p, λ) which satisfies 5 constraints: The number of independent components (degrees of

freedom) are then 10 (symmetric Lorentz tensor) - 5 (constraints) = 5, which corresponds to the 5

possible spin orientations.

If we use the Clebsch-Gordan coefficients to couple two spin-1 polarization 4-vectors εµν(~p, λ) to give

spin 2, we obtain the following Lorentz tensor:

εµν(~p, λ) =
∑
λ1,λ2

(1 1, λ1 λ2|2λ) εµ(~p, λ1) ε
ν(~p, λ2) (5.1)

Because of the symmetry property of the Clebsch-Gordan coefficient, this is a symmetric tensor:

εµν(~p, λ) = ενµ(~p, λ). By construction, it satisfies pµ ε
µν(~p, λ) = 0 for fixed ν, which are 4 constraints.

To find one more constraint, consider the following contraction of the Lorentz indices µ and ν:

εµµ(~p, λ) =
∑
λ1,λ2

(1 1, λ1 λ2|2λ) εµ(~p, λ1) εµ(~p, λ2)

Using the relations (see Sect. 3) εµ(~p, λ2) = (−1)λ2 ε∗µ(~p,−λ2) and ε∗µ(~p, λ′)εµ(~p, λ) = −δλ′λ, this

becomes

εµµ(~p, λ) = −
∑
λ1

(1 1 , λ1 − λ1|2λ) (−1)λ1

= −δλ0
∑
λ1

(1 1, λ1 − λ1|2 0) (−1)λ1 = −δλ0

(
− 1√

6
− 1√

6
+

√
2

3

)
= 0

Therefore the 5th constraint is found as

εµµ(~p, λ) = 0 (5.2)
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Multiplying the plane waves for a particle with energy Ep and momentum ~p, the resulting wave

function ψµν(~x, t) satisfies the following set of equations:

(
� +m2

)
ψµν(~x, t) = 0

ψµν(~x, t) = ψνµ(~x, t)

∂µψ
µν(~x, t) = 0

ψµµ(~x, t) = 0

The last 2 equations are constraints.

Notes: (1) It is possible to give one equation of motion for the symmetric tensor field ψµν , from which

the constraints can be derived.

(2) It is possible to write down the field equations for general spin, by successive coupling of spin

1/2 Dirac spinors. These equations are called the Bargmann-Wigner equations. However, they are

not very convenient for actual calculations.
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