2 Current conservation for Schrödinger equation

Schrödinger wave equation (for one particle):

$$
\begin{align*}
\left(-\frac{\hbar^{2}}{2 m} \Delta+V(x)\right) & =i \hbar \frac{\partial \psi}{\partial t} \tag{2.1}\\
H \psi(\vec{x}, t) & =i \hbar \frac{\partial \psi}{\partial t} \tag{2.2}
\end{align*}
$$

From Eq.(2.1) and its complex conjugate ($*$), we get

$$
\begin{aligned}
(H \psi) & =i \hbar \frac{\partial \psi}{\partial t} \Rightarrow \psi^{*}(H \psi)=i \hbar \psi^{*} \frac{\partial \psi}{\partial t} \\
\left(H \psi^{*}\right) & =-i \hbar \frac{\partial \psi^{*}}{\partial t} \Rightarrow \psi\left(H \psi^{*}\right)=-i \hbar \psi \frac{\partial \psi^{*}}{\partial t}
\end{aligned}
$$

Taking the difference of these two equations, we get

$$
\begin{aligned}
\psi^{*}(H \psi)-\psi\left(H \psi^{*}\right) & =i \hbar \frac{\partial}{\partial t}\left(\psi^{*} \psi\right) \\
-\frac{\hbar^{2}}{2 m}\left(\psi^{*} \Delta \psi-\psi \Delta \psi^{*}\right) & =i \hbar \frac{\partial}{\partial t}\left(\psi^{*} \psi\right) \\
-\frac{\hbar^{2}}{2 m} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right) & =i \hbar \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)
\end{aligned}
$$

This gives the "current conservation" (continuity equation):

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \tag{2.3}
\end{equation*}
$$

where ρ is the probability density

$$
\rho=\psi^{*} \psi
$$

and \vec{j} is the probability current

$$
\vec{j}=\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)
$$

From Eq.(2.3) we get the "conservation of probability"

$$
\frac{\partial}{\partial t} \int \mathrm{~d}^{3} x \rho(\vec{x}, t)=0
$$

Important point: Schrödinger equation (2.1) is of first order in time!

Plane wave solutions of (2.1) for free particles:

$$
\begin{equation*}
\psi(\vec{x}, t)=e^{-i(E t-\vec{p} \cdot \vec{x}) / \hbar} \tag{2.4}
\end{equation*}
$$

where \vec{p} are the eigenvalues of the momentum operator $-i \hbar \vec{\nabla}$, and $E=\vec{p}^{2} /(2 m)$ is the energy.

3 Dirac equation

Wave equation of Schrödinger form (first order in $\partial / \partial t$):

$$
\begin{equation*}
H \psi(\vec{x}, t)=i \hbar \frac{\partial \psi}{\partial t} \tag{3.1}
\end{equation*}
$$

What is the relativistic Hamiltonian H for a free particle ? - In theory of relativity, space and time enter very symmetrically (see, for example, Lorentz transformation).
$\Rightarrow \mathrm{H}$ should be of first order in $\vec{\nabla}$ (or: first order in momentum operator $\vec{p}=-i \hbar \vec{\nabla}$), and have dimension of energy. Try

$$
\begin{equation*}
H=\left(\alpha_{1} p_{1}\right) c+\left(\alpha_{2} p_{2}\right) c+\left(\alpha_{3} p_{3}\right) c+\beta\left(m c^{2}\right) \equiv(\vec{\alpha} \cdot \vec{p}) c+\beta\left(m c^{2}\right) \tag{3.2}
\end{equation*}
$$

where $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and β are dimensionless constants (independent of \vec{x} and t.)
But: If $\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta$ are just numbers, then H is not invariant under rotations!
Later, we will see that this problem can be solved if $\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta$ are not constant numbers, but constant matrices! In this case, ψ is a vector!

Take $i \hbar(\partial / \partial t)$ of wave equation (3.1):

$$
\begin{align*}
-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}} & =\left((\vec{\alpha} \cdot \vec{p}) c+\beta\left(m c^{2}\right)\right)^{2} \psi \\
& =\left[c^{2}(\vec{\alpha} \cdot \vec{p})(\vec{\alpha} \cdot \vec{p})+m c^{3}((\vec{\alpha} \cdot \vec{p}) \beta+\beta(\vec{\alpha} \cdot \vec{p}))+\left(m c^{2}\right)^{2} \beta^{2}\right] \psi \tag{3.3}
\end{align*}
$$

Here $\vec{p}=-i \hbar \vec{\nabla}$ is the momentum operator.

The solution for a free particle (momentum \vec{p}) must be of the form

$$
\begin{equation*}
\psi(\vec{x}, t)=w(\vec{p}) e^{-i(E t-\vec{p} \cdot \vec{x}) / \hbar} \tag{3.4}
\end{equation*}
$$

where $w(\vec{p})$ ist a vector, independent of (\vec{x}, t).
Inserting (3.4) into (3.3) we get

$$
\begin{equation*}
\left.E^{2}=c^{2}(\vec{\alpha} \cdot \vec{p})(\vec{\alpha} \cdot \vec{p})+m c^{3}((\vec{\alpha} \cdot \vec{p}) \beta+\beta(\vec{\alpha} \cdot \vec{p}))+\left(m c^{2}\right)^{2} \beta^{2}\right) \tag{3.5}
\end{equation*}
$$

This must be the energy squared of a free particle with momentum \vec{p}, i.e., $E^{2}=(p c)^{2}+\left(m c^{2}\right)^{2}$. Therefore

$$
\begin{align*}
(\vec{\alpha} \cdot \vec{p})(\vec{\alpha} \cdot \vec{p}) & =\vec{p}^{2} \tag{3.6}\\
(\vec{\alpha} \cdot \vec{p}) \beta+\beta(\vec{\alpha} \cdot \vec{p}) & =0 \tag{3.7}\\
\beta^{2} & =1 \tag{3.8}
\end{align*}
$$

This must hold for any vector \vec{p}, therefore

$$
\begin{align*}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =2 \delta_{i j} \quad(i, j=1,2,3) \tag{3.9}\\
\alpha_{i} \beta+\beta \alpha_{i} & =0 \quad(i=1,2,3) \tag{3.10}\\
\alpha_{i}^{2}=1 \quad(i=1,2,3), \quad \beta^{2} & =1 \tag{3.11}
\end{align*}
$$

$\underline{\text { Conditions for matrices } \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \text { : }}$

- Hermite (because Hamiltonian H must be hermite).
- Eigenvalues are ± 1 (because of Eq.(3.11)).
- Trace is zero: For example, from Eq.(3.10), $\operatorname{Tr}\left(\alpha_{i}\right)=-\operatorname{Tr}\left(\beta \alpha_{i} \beta\right)=-\operatorname{Tr}\left(\beta^{2} \alpha_{i}\right)=-\operatorname{Tr}\left(\alpha_{i}\right)=0$.

Therefore, sum of eigenvalues must be zero \Rightarrow dimension of matrices must be even $(N=2,4,6, \ldots)$. But $N=2$ is not possible: The four independent hermite 2×2 matrices are the Pauli matrices $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ and the unit matrix 1. But then (3.10) is not satisfied.

Lowest dimension is $N=4$. For example, the following matrices satisfy all conditions (3.9) - (3.11):

$$
\vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \tag{3.12}\\
\vec{\sigma} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Home work: Show that these matrices satisfy the conditions (3.9) - (3.11).

Current conservation for Dirac equation:
Dirac equation (3.1) and its hermite conjugate (\dagger):

$$
\begin{align*}
i \hbar \frac{\partial \psi}{\partial t} & =-i \hbar c \vec{\alpha} \cdot(\vec{\nabla} \psi)+\beta m c^{2} \psi \tag{3.13}\\
-i \hbar \frac{\partial \psi^{\dagger}}{\partial t} & =i \hbar c\left(\vec{\nabla} \psi^{\dagger}\right) \cdot \vec{\alpha}+\psi^{\dagger} \beta m c^{2} \tag{3.14}
\end{align*}
$$

Multiply (3.13) from left by ψ^{\dagger}, and (3.14) from right by ψ, and take the difference of these equations:

$$
i \hbar \frac{\partial}{\partial t}\left(\psi^{\dagger} \psi\right)=-i \hbar c \vec{\nabla} \cdot\left(\psi^{\dagger} \vec{\alpha} \psi\right)
$$

This has the form of current conservation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \tag{3.15}
\end{equation*}
$$

with the probability density

$$
\begin{equation*}
\rho=\psi^{\dagger} \psi \tag{3.16}
\end{equation*}
$$

and the probability current

$$
\begin{equation*}
\vec{j}=c \psi^{\dagger} \vec{\alpha} \psi \tag{3.17}
\end{equation*}
$$

Relation to the spin:

- There must be four independent solutions to the Dirac equation (3.1).
- The are two different energy eigenvalues: From (3.5), $E= \pm \sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$.
- Therefore, two solutions have energy $E=+\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$, and two solutions have energy $E=-\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$.
 the same energy.

The angular momentum operator for the Dirac equation is given by

$$
\begin{equation*}
\vec{J}=\vec{L}+\vec{S}=\vec{r} \times \vec{p}+\frac{\hbar}{2} \vec{\Sigma} \tag{3.18}
\end{equation*}
$$

where the 4×4 matrices $\vec{\Sigma}=\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ are given by

$$
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \tag{3.19}\\
0 & \vec{\sigma}
\end{array}\right)
$$

The commutation relations of \vec{L} and \vec{S} with the Hamiltonian $H=c(\vec{\alpha} \cdot \vec{p})+\beta m c^{2}$ are as follows:

$$
\begin{aligned}
{\left[H, L_{i}\right] } & =-i \hbar c(\vec{\alpha} \times \vec{p})_{i} \\
{\left[H, S_{i}\right] } & =i \hbar c(\vec{\alpha} \times \vec{p})_{i}
\end{aligned}
$$

Try to check these relations!
Therefore $[H, \vec{J}]=0$, and the total angular momentum \vec{J} (sum of orbital and spin angular momentum) is conserved !

