
4 Solutions of the free Dirac equation

Dirac equation for free particle:[
(~α · ~̂p) c+ β (mc2)

]
ψ(~x, t) = i~

∂ψ(~x, t)

∂t
(4.1)

where ~̂p = −i~~∇ is the momentum operator. Plane wave solution for free particle with momentum

~p:

ψ(~x, t) = w(~p, s) e−i(Et−~p·~x)/~ (4.2)

where E = ±
√

(pc)2 + (mc2)2, and w(~p, s) is a 4-component “Dirac spinor”, which depends on the

spin direction s (see later). Inserting (4.2) into (4.1),

[
(~α · ~p) c+ β (mc2)

]
w(~p, s) = Ew(~p, s) (4.3)

We express w(~p, s) in the form

w(~p, s) =

(
φ
χ

)
(4.4)

where φ and χ are 2-component “Pauli spinors”, depending on (~p, s). Inserting this into (4.3),(
(E −mc2) −(~σ · ~p)c
−(~σ · ~p)c (E +mc2)

)(
φ
χ

)
= 0 (4.5)

Therefore, the coupled equations for φ and χ are

(
E −mc2

)
φ− (~σ · ~p)c χ = 0 (4.6)(

E +mc2
)
χ− (~σ · ~p)c φ = 0 (4.7)

• For E = +
√

(pc)2 + (mc2)2 ≡ Ep (positive energy), we use (4.7) to eliminate χ:

χ =
(~σ · ~p)c
Ep +mc2

φ (4.8)

Then the positive energy spinor (w+) becomes

w+(~p, s) ≡ u(~p, s) = Np

(
φ(s)

(~σ·~p)c
Ep+mc2

φ(s)

)
(4.9)

Here Np is a normalization factor (see later).
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• For E = −
√

(pc)2 + (mc2)2 ≡ −Ep (negative energy), we use (4.6) to eliminate φ:

φ = − (~σ · ~p)c
Ep +mc2

χ (4.10)

Then the negative energy spinor (w−) becomes

w−(~p, s) ≡ v(−~p, s) = Np

(
− (~σ·~p)c
Ep+mc2

χ(s)

χ(s)

)
(4.11)

The Dirac equation does not determine the 2-component Pauli spinors φ in (4.9) or χ in (4.11) 1 !

Possible choice of Pauli spinors: If the particle has a definite spin direction (up or down) in its

rest frame: Define the z axis as the “spin quantization axis”, and require that u(~p = 0, s) and

v(~p = 0, s) are eigenvectors of the spin operator (in units of ~) S3 = 1
2
Σ3, with eigenvalues s = ±1/2:

S3 u(~p = 0, s) = s u(~p = 0, s)⇒ 1

2
σ3 φ(s) = s φ(s)⇒ φ(+1/2) =

(
1
0

)
, φ(−1/2) =

(
0
1

)
S3 v(~p = 0, s) = s v(~p = 0, s)⇒ 1

2
σ3 χ(s) = s χ(s)⇒ χ(+1/2) =

(
1
0

)
, χ(−1/2) =

(
0
1

)
(4.12)

Notes:

• If some other direction ~n is chosen as the spin quantization axis, then one chooses φ(s) and

χ(s) as eigenvectors of 1
2

(~σ · ~n) with eigenvalues s = ±1/2: 1
2

(~σ · ~n)φ(s) = s φ(s), and

1
2

(~σ · ~n)χ(s) = s χ(s).

• Important point: Hamiltonian H and spin operators ~S = ~
2
~Σ do not commute: [H,Σi] 6= 0

(i = 1, 2, 3). ⇒ In general, the spinors u, v are eigenvectors ofH, but cannot be also eigenvectors

of S3.

• Normalization of spinors: We choose the orthonormalization as

u†(~p, s′)u(~p, s) =
Ep
mc2

δss′ , v†(~p, s′)v(~p, s) =
Ep
mc2

δss′ , v†(−~p, s′)u(~p, s) = u†(~p, s′)v(−~p, s) = 0

(4.13)

1Reason: (1) Dirac eq. is a homogeneous matrix equation; (2) the spin direction is still no specified in (4.9) and
(4.11).
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This determines the normalization factor Np. Using φ†(s′)φ(s) = δss′ we get

N2
p φ
†(s′)

(
1 +

~p2c2

(Ep +mc2)2

)
φ(s) ≡ Ep

mc2
δss′

⇒ N2
p

(
1 +

~p2c2

(Ep +mc2)2

)
≡ Ep

mc2

⇒ N2
p

(
1 +

Ep −mc2

Ep +mc2

)
≡ Ep

mc2

This gives

Np =

√
Ep +mc2

2mc2
(4.14)

Finally, the wave functions (4.2) are normalized (in a volume V ) as∫
V

d3x ψ†(~x, t)ψ(~x, t) = 1 (4.15)

Final results for solutions of the Dirac equation (4.1):

• Positive energy solution:

ψ
(+)
~p,s (~x, t) =

1√
V

√
mc2

Ep
u(~p, s)e−i(Ept−~p·~x)/~

u(~p, s) =

√
Ep +mc2

2mc2

(
φ(s)

(~σ·~p)c
Ep+mc2

φ(s)

)
(4.16)

This is the wave function of a particle with energy Ep > 0, momentum ~p, and spin projection

s = ±1/2 in its rest frame.

• Negative energy solution:

ψ
(−)
~p,s (~x, t) =

1√
V

√
mc2

Ep
v(−~p, s)ei(Ept+~p·~x)/~

v(~p, s) =

√
Ep +mc2

2mc2

(
(~σ·~p)c
Ep+mc2

φ(s)

φ(s)

)
(4.17)

This is the wave function of a particle with energy −Ep < 0, momentum ~p, and spin projection

s = ±1/2 in its rest frame.

These wave functions satisfy the orthonormalization conditions (with α, α′ = + or −)∫
V

d3xψ
(α′)†
~p,s′ (~x, t)ψ

(α)
~p,s (~x, t) = δα′αδs′s (4.18)
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5 Dirac γ-matrices

Instead of (β, ~α), one can also use

γ0 ≡ β =

(
1 0
0 −1

)
, ~γ ≡ β~α =

(
0 ~σ
−~σ 0

)
, γµ ≡

(
γ0, ~γ

)
, γµ ≡

(
γ0,−~γ

)
.

Then the Dirac equation (4.1) can be expressed as (remember: x0 = ct)(
i~γ0

∂

∂x0
− ~γ · ~̂p−mc

)
ψ(~x, t) = 0 (5.1)

where ~̂p = −i~~∇ is the momentum operator.

Now define the operator p̂µ in terms of the contravariant derivative (see No. 1) as

p̂µ ≡ i~∂µ = i~
(

∂

∂x0
,−~∇

)
=

(
i~

∂

∂x0
, ~̂p

)
(5.2)

Then (5.1) becomes

(p̂µγµ −mc)ψ(x) = 0 (5.3)

Finally, we define the “slash notation”: For any 4-vector V µ, the 4× 4 matrix 6V is defined by

6V ≡ γµV
µ = γ0V 0 − ~γ · ~V (5.4)

Then we can express (5.3) as

(6 p̂−mc)ψ(x) = 0 (5.5)

The previous relations for the matrices (β, ~α) become(
γ0
)2

= 1 ,
(
γi
)2

= −1 , (i = 1, 2, 3 fix)

{γµ, γν} = 2gµν (5.6)

where {A,B} = AB + BA is the anticommutator. Instead of ψ†, it is convenient to use ψ, which is

defined by

ψ ≡ ψ†γ0

Then the probability density ρ = ψ†ψ and the current ~j = c ψ†~αψ can be combined into a 4-vector

jµ = c ψγµψ =
(
c ρ,~j

)
, (current conservation : ∂µj

µ = 0) (5.7)
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