6 Invariance of D.E. under coordinate transformations

Transformation of coordinates x^{μ} and 4-momentum operator $\hat{p}^{\mu}=i \hbar \partial^{\mu}$ from a system S to another system S^{\prime} :

$$
\begin{equation*}
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}, \quad \hat{p}^{\prime \mu}=\Lambda_{\nu}^{\mu} \hat{p}^{\nu} \tag{6.1}
\end{equation*}
$$

Here $\Lambda^{\mu}{ }_{\nu}$ is a "generalized" Lorentz transformation, including also rotations. For a pure rotation: $x^{0^{\prime}}=x^{0}, x^{\prime}{ }^{\prime}=R^{i}{ }_{j} x^{j}$, where $R^{i}{ }_{j}$ is a 3×3 rotation matrix:

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cc}
0 & 0 \tag{6.2}\\
0 & R_{j}^{i}
\end{array}\right)
$$

$\underline{\text { Basic requirement: The Dirac equation must keep its basic form under coordinate transformations! }}$

$$
\begin{align*}
S: & & (\not p-m c) \psi(x) & =0 \tag{6.3}\\
S^{\prime}: & & \left(\not p^{\prime}-m c\right) \psi^{\prime}\left(x^{\prime}\right) & =0 \tag{6.4}
\end{align*}
$$

Define a 4×4 matrix \hat{S} such that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}\right)=\hat{S} \psi(x) \tag{6.5}
\end{equation*}
$$

Then from Eq.(6.3) and (6.4) we obtain

$$
\begin{equation*}
\hat{S}^{-1} p^{\prime} \hat{S}=\not p^{\prime} \tag{6.6}
\end{equation*}
$$

From this, we derive a relation to determine \hat{S} as follows: Using $\tilde{p}^{\prime}=\gamma^{\sigma} p_{\sigma}^{\prime}$ and Eq. (6.1),

$$
\begin{aligned}
\left(\hat{S}^{-1} \gamma^{\sigma} \hat{S}\right) \Lambda_{\sigma}^{\nu} \hat{p}_{\nu} & =\gamma^{\nu} \hat{p}_{\nu} \\
\Rightarrow\left(\hat{S}^{-1} \gamma^{\sigma} \hat{S}\right) \Lambda_{\sigma}^{\nu} & =\gamma^{\nu} \\
\Rightarrow\left(\hat{S}^{-1} \gamma^{\sigma} \hat{S}\right) \Lambda_{\sigma}^{\nu} \Lambda_{\nu}^{\mu} & =\Lambda_{\nu}^{\mu} \gamma^{\nu}
\end{aligned}
$$

Using here the basic property of the matrix Λ (see Chapt.1, Eq.(1.8))

$$
\Lambda_{\sigma}{ }^{\nu} \Lambda^{\mu}{ }_{\nu}=g_{\sigma}{ }^{\mu}
$$

we obtain finally

$$
\begin{equation*}
\left(\hat{S}^{-1} \gamma^{\mu} \hat{S}\right)=\Lambda_{\nu}^{\mu} \gamma^{\nu} \tag{6.7}
\end{equation*}
$$

Note: This relation tells that the "matrix transformation" of γ^{μ} (l.h.s. of (6.7)) is the same as the " 4 -vector transformation" of γ^{μ} (r.h.s. of (6.7)).

Take the dagger (\dagger) of (6.7), and use

$$
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}=\left(\gamma^{0},-\vec{\gamma}\right)
$$

Then we obtain from (6.7)

$$
\hat{S}^{\dagger} \gamma^{0} \gamma^{\mu} \gamma^{0}\left(\hat{S}^{-1}\right)^{\dagger}=\Lambda_{\nu}^{\mu} \gamma^{0} \gamma^{\nu} \gamma^{0}
$$

Multiply this from left and right by γ^{0} to get

$$
\left(\gamma^{0} \hat{S}^{\dagger} \gamma^{0}\right) \gamma^{\mu}\left(\gamma^{0}\left(\hat{S}^{-1}\right)^{\dagger} \gamma^{0}\right)=\Lambda_{\nu}^{\mu} \gamma^{\nu}
$$

Comparing this with Eq.(6.7) we obtain the relation

$$
\begin{equation*}
\gamma^{0} \hat{S}^{\dagger} \gamma^{0}=\hat{S}^{-1} \tag{6.8}
\end{equation*}
$$

We will discuss the form of the matrix \hat{S} later.

A similar discussion is possible also for parity transformation:

$$
x^{\mu} \longrightarrow x^{\prime \mu}=\left(x^{0},-\vec{x}\right)=x_{\mu}=g_{\mu \nu} x^{\nu}
$$

Comparing with (6.1), we see that for parity transformations we can substitute $\Lambda^{\mu}{ }_{\nu} \longrightarrow g_{\mu \nu}$. If we define a 4×4 matrix \hat{P} like (6.5) by

$$
\psi^{\prime}\left(x^{\prime}\right)=\hat{P} \psi(x)
$$

then we can use (6.7) to get

$$
\begin{equation*}
\left(\hat{P}^{-1} \gamma^{\mu} \hat{P}\right)=g_{\mu \nu} \gamma^{\nu}=\gamma_{\mu}=\left(\gamma^{0},-\vec{\gamma}\right) \tag{6.9}
\end{equation*}
$$

This is satisfied for

$$
\hat{P}=\gamma^{0}
$$

Eq.(6.8) is also satisfied, because $\hat{P}=\hat{P}^{\dagger}=\hat{P}^{-1}$.

7 Bilinear forms

A "bilinear form" is defined as

$$
\begin{equation*}
j(x) \equiv \bar{\psi}(x) \Gamma \psi(x) \tag{7.1}
\end{equation*}
$$

where Γ is a Dirac matrix.
The following 16 Dirac matrices often appear in applications:

$$
\begin{equation*}
\Gamma=\left(1, \gamma^{\mu}, \sigma^{\mu \nu}, \gamma^{5}, \gamma^{\mu} \gamma_{5}\right) \tag{7.2}
\end{equation*}
$$

Here $\sigma^{\mu \nu}$ is defined by the commutator of two γ-matrices:

$$
\begin{equation*}
\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{7.3}
\end{equation*}
$$

and $\gamma_{5}=\gamma^{5}$ is defined by

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
0 & 1 \tag{7.4}\\
1 & 0
\end{array}\right)
$$

From these relations one can show, for example, that

$$
\left\{\gamma^{\mu}, \gamma_{5}\right\}=0, \quad\left[\sigma^{\mu \nu}, \gamma_{5}\right]=0, \quad\left[\hat{S}, \gamma_{5}\right]=0
$$

Using then relations (6.7) and (6.9), one can show the properties of the bilinear forms (7.1) under Lorentz transformations, rotations, and parity transformations.
For example, for $\Gamma=c \gamma^{\mu}$, the bilinear (7.1) is the probability current $j^{\mu}(x)=c \bar{\psi}(x) \gamma^{\mu} \psi(x)$. After a Lorentz transformation it becomes

$$
\begin{aligned}
j^{\prime \mu}\left(x^{\prime}\right) & =c \psi^{\prime \dagger}\left(x^{\prime}\right) \gamma^{0} \gamma^{\mu} \psi^{\prime}\left(x^{\prime}\right) \\
& =c \psi^{\dagger}(x) \hat{S}^{\dagger} \gamma^{0} \gamma^{\mu} \hat{S} \psi(x) \\
& =c \psi^{\dagger}(x) \gamma_{0} \hat{S}^{-1} \gamma^{\mu} \hat{S} \psi(x) \\
& =c \Lambda_{\nu}^{\mu} \bar{\psi}(x) \gamma^{\nu} \psi(x)=c \Lambda_{\nu}^{\mu} j^{\nu}(x)
\end{aligned}
$$

Therefore the current $j^{\mu}(x)$ behaves as a 4 -vector under Lorentz transformations. Under pure rotations, the density $j^{0}(x)$ is invariant, and $\vec{j}(x)$ behaves a 3 -vector. Under parity transformations, $j^{0}(x)$ is invariant, and $\vec{j}(x)$ changes the sign.

By similar calculations, one can obtain also the results for the behavior of other bilinears under Lorentz transformations (LT) and parity transformations (PT). If we define $(-1)^{\mu} \equiv 1$ for $\mu=0$ and $(-1)^{\mu} \equiv-1$ for $\mu=1,2,3$ we obtain

- $\bar{\psi} \psi$: Scalar under LT, scalar under PT \Rightarrow This is called a "scalar".
- $\bar{\psi} \gamma^{\mu} \psi: 4$-vector under LT, $(-1)^{\mu}$ under $\mathrm{PT} \Rightarrow$ This is called a "vector".
- $\bar{\psi} \gamma_{5} \psi$: Scalar under LT, (-1) under $\mathrm{PT} \Rightarrow$ This is called a "pseudo-scalar".
- $\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$: 4-vector under LT, $-(-1)^{\mu}$ under PT \Rightarrow This is called a "pseudo-vector".
- $\bar{\psi} \sigma^{\mu \nu} \psi$: Tensor (rank 2) under LT, $(-1)^{\mu}(-1)^{\nu}$ under PT \Rightarrow This is called a (second rank) "tensor".

Note: For free particles with momentum \vec{p} and positive energy E_{p} we have
$\bar{\psi}(x) \Gamma \psi(x)=\frac{1}{V} \frac{m c^{2}}{E_{p}}(\bar{u}(\vec{p}, s) \Gamma u(\vec{p}, s))$.
Consider the case $\Gamma=\gamma^{\mu} \gamma_{5}$. For $\mu=i$ this is related to the spin operator (in units of \hbar) $\hat{\vec{S}}=\frac{1}{2} \vec{\Sigma}=\frac{1}{2}\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$ by

$$
\hat{\vec{S}}=\frac{1}{2} \gamma^{0} \vec{\gamma} \gamma_{5}
$$

The following pseudo-vector can then be called the "spin 4 -vector":

$$
\begin{equation*}
S^{\mu}(p)=\frac{1}{2} \bar{u}(\vec{p}, s) \gamma^{\mu} \gamma_{5} u(\vec{p}, s) \tag{7.5}
\end{equation*}
$$

The reason for this is:

- In the rest system of the particle, $S^{0}(\vec{p}=0)=0$ and

$$
\begin{equation*}
\vec{S}(\vec{p}=0)=\frac{1}{2} u^{\dagger}(\vec{p}=0, s) \vec{\Sigma} u(\vec{p}=0, s)=\frac{1}{2} \phi(s)^{\dagger} \vec{\sigma} \phi(s)=\frac{1}{2} \vec{n} \equiv \vec{S}_{0} \tag{7.6}
\end{equation*}
$$

which gives the spin direction in the rest system ${ }^{1}$. Therefore, $S^{\mu}(\vec{p}=0)=\left(0, \vec{S}_{0}\right)$.

- The vector $S^{\mu}(p)$ is obtained from $S^{\mu}(\vec{p}=0)$ by a Lorentz transformation with velocity $\vec{v}=$ $-\vec{p} c / E_{p}$:

$$
\begin{equation*}
S^{\mu}(p)=\Lambda^{\mu}{ }_{\nu}\left(\vec{v}=-\frac{\vec{p} c}{E_{p}}\right) S^{\nu}(\vec{p}=0)=\left(\frac{\vec{p} \cdot \vec{S}_{0}}{m c}, \vec{S}_{0}+\frac{\vec{p}\left(\vec{p} \cdot \overrightarrow{S_{0}}\right)}{m\left(E_{p}+m c^{2}\right)}\right) \tag{7.7}
\end{equation*}
$$

Then the 3 -vector $\vec{S}(p)$ is the "expectation value" of the spin operator between spinors, $\vec{S}(p)=$ $\frac{1}{2} u^{\dagger}(\vec{p}, s) \vec{\Sigma} u(\vec{p}, s)$, and depends on the momentum ! (Remember that $\left[H, \Sigma_{i}\right] \neq 0$, and the spinors are eigenvectors of the Hamiltonian H but not of the spin operator.)

[^0]
[^0]: ${ }^{1}$ Remember that the 2-component Pauli spinor $\phi(s)$ is an eigenvector of $\frac{1}{2}(\vec{\sigma} \cdot \vec{n})$ with eigenvalue $s= \pm 1 / 2$.

