6 Invariance of D.E. under coordinate transformations

Transformation of coordinates x^{μ} and 4-momentum operator $\hat{p}^{\mu} = i\hbar\partial^{\mu}$ from a system S to another system S':

$$x^{\prime \mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} , \qquad \hat{p}^{\prime \mu} = \Lambda^{\mu}_{\ \nu} \, \hat{p}^{\nu} \tag{6.1}$$

Here Λ^{μ}_{ν} is a "generalized" Lorentz transformation, including also rotations. For a pure rotation: $x^{0'} = x^0, x'^i = R^i_{\ j} x^j$, where $R^i_{\ j}$ is a 3 × 3 rotation matrix:

$$\Lambda^{\mu}_{\ \nu} = \left(\begin{array}{cc} 0 & 0\\ 0 & R^{i}_{\ j} \end{array}\right) \tag{6.2}$$

Basic requirement: The Dirac equation must keep its basic form under coordinate transformations!

$$S: \qquad (\not p - mc) \psi(x) = 0$$
 (6.3)

$$S': \qquad (\not p' - mc) \, \psi'(x') = 0 \tag{6.4}$$

Define a 4×4 matrix \hat{S} such that

$$\psi'(x') = \hat{S}\,\psi(x) \tag{6.5}$$

Then from Eq.(6.3) and (6.4) we obtain

$$\hat{S}^{-1}\hat{p}'\hat{S} = \hat{p} \tag{6.6}$$

From this, we derive a relation to determine \hat{S} as follows: Using $\hat{p}' = \gamma^{\sigma} p'_{\sigma}$ and Eq. (6.1),

$$\begin{pmatrix} \hat{S}^{-1} \gamma^{\sigma} \hat{S} \end{pmatrix} \Lambda_{\sigma}^{\nu} \hat{p}_{\nu} &= \gamma^{\nu} \hat{p}_{\nu} \\ \Rightarrow \begin{pmatrix} \hat{S}^{-1} \gamma^{\sigma} \hat{S} \end{pmatrix} \Lambda_{\sigma}^{\nu} &= \gamma^{\nu} \\ \Rightarrow \begin{pmatrix} \hat{S}^{-1} \gamma^{\sigma} \hat{S} \end{pmatrix} \Lambda_{\sigma}^{\nu} \Lambda_{\nu}^{\mu} &= \Lambda_{\nu}^{\mu} \gamma^{\nu}$$

Using here the basic property of the matrix Λ (see Chapt.1, Eq.(1.8))

$$\Lambda^{\ \nu}_{\sigma}\Lambda^{\mu}_{\ \nu} = g^{\ \mu}_{\sigma}$$

we obtain finally

$$\left(\hat{S}^{-1}\gamma^{\mu}\hat{S}\right) = \Lambda^{\mu}_{\ \nu}\gamma^{\nu} \tag{6.7}$$

<u>Note</u>: This relation tells that the "matrix transformation" of γ^{μ} (l.h.s. of (6.7)) is the same as the "4-vector transformation" of γ^{μ} (r.h.s. of (6.7)).

Take the dagger (\dagger) of (6.7), and use

$$\gamma^{\mu\dagger} = \gamma^0 \, \gamma^\mu \, \gamma^0 = \left(\gamma^0, -\vec{\gamma}\right)$$

Then we obtain from (6.7)

$$\hat{S}^{\dagger} \gamma^{0} \gamma^{\mu} \gamma^{0} \left(\hat{S}^{-1} \right)^{\dagger} = \Lambda^{\mu}_{\ \nu} \gamma^{0} \gamma^{\nu} \gamma^{0}$$

Multiply this from left and right by γ^0 to get

$$\left(\gamma^0 \, \hat{S}^{\dagger} \, \gamma^0\right) \gamma^{\mu} \, \left(\gamma^0 \, \left(\hat{S}^{-1}\right)^{\dagger} \, \gamma^0\right) = \Lambda^{\mu}_{\ \nu} \, \gamma^{\nu}$$

Comparing this with Eq.(6.7) we obtain the relation

$$\gamma^0 \,\hat{S}^\dagger \,\gamma^0 = \hat{S}^{-1} \tag{6.8}$$

We will discuss the form of the matrix \hat{S} later.

A similar discussion is possible also for parity transformation:

$$x^{\mu} \longrightarrow x^{\prime \mu} = \left(x^{0}, -\vec{x}\right) = x_{\mu} = g_{\mu\nu}x^{\nu}$$

Comparing with (6.1), we see that for parity transformations we can substitute $\Lambda^{\mu}_{\nu} \longrightarrow g_{\mu\nu}$. If we define a 4 × 4 matrix \hat{P} like (6.5) by

$$\psi'(x') = \hat{P}\,\psi(x)$$

then we can use (6.7) to get

$$\left(\hat{P}^{-1}\gamma^{\mu}\hat{P}\right) = g_{\mu\nu}\gamma^{\nu} = \gamma_{\mu} = \left(\gamma^{0}, -\vec{\gamma}\right)$$
(6.9)

This is satisfied for

$$\hat{P} = \gamma^0$$

Eq.(6.8) is also satisfied, because $\hat{P} = \hat{P}^{\dagger} = \hat{P}^{-1}$.

7 Bilinear forms

A "bilinear form" is defined as

$$j(x) \equiv \overline{\psi}(x) \,\Gamma\,\psi(x) \tag{7.1}$$

where Γ is a Dirac matrix.

The following 16 Dirac matrices often appear in applications:

$$\Gamma = \left(1, \ \gamma^{\mu}, \ \sigma^{\mu\nu}, \ \gamma^{5}, \ \gamma^{\mu}\gamma_{5}\right) \tag{7.2}$$

Here $\sigma^{\mu\nu}$ is defined by the commutator of two γ -matrices:

$$\sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] \tag{7.3}$$

and $\gamma_5 = \gamma^5$ is defined by

$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(7.4)

From these relations one can show, for example, that

$$\{\gamma^{\mu}, \gamma_5\} = 0, \qquad [\sigma^{\mu\nu}, \gamma_5] = 0, \qquad [\hat{S}, \gamma_5] = 0$$

Using then relations (6.7) and (6.9), one can show the properties of the bilinear forms (7.1) under Lorentz transformations, rotations, and parity transformations.

For example, for $\Gamma = c \gamma^{\mu}$, the bilinear (7.1) is the probability current $j^{\mu}(x) = c\overline{\psi}(x) \gamma^{\mu} \psi(x)$. After a Lorentz transformation it becomes

$$\begin{aligned} j^{\prime\mu}(x^{\prime}) &= c \,\psi^{\prime\dagger}(x^{\prime})\gamma^{0}\gamma^{\mu}\psi^{\prime}(x^{\prime}) \\ &= c\psi^{\dagger}(x)\,\hat{S}^{\dagger}\,\gamma^{0}\,\gamma^{\mu}\,\hat{S}\,\psi(x) \\ &= c\,\psi^{\dagger}(x)\,\gamma_{0}\,\hat{S}^{-1}\,\gamma^{\mu}\,\hat{S}\,\psi(x) \\ &= c\,\Lambda^{\mu}_{\nu}\,\overline{\psi}(x)\,\gamma^{\nu}\,\psi(x) = c\,\Lambda^{\mu}_{\nu}\,j^{\nu}(x) \end{aligned}$$

Therefore the current $j^{\mu}(x)$ behaves as a 4-vector under Lorentz transformations. Under pure rotations, the density $j^{0}(x)$ is invariant, and $\vec{j}(x)$ behaves a 3-vector. Under parity transformations, $j^{0}(x)$ is invariant, and $\vec{j}(x)$ changes the sign.

By similar calculations, one can obtain also the results for the behavior of other bilinears under Lorentz transformations (LT) and parity transformations (PT). If we define $(-1)^{\mu} \equiv 1$ for $\mu = 0$ and $(-1)^{\mu} \equiv -1$ for $\mu = 1, 2, 3$ we obtain

- $\overline{\psi}\psi$: Scalar under LT, scalar under PT \Rightarrow This is called a "scalar".
- $\overline{\psi}\gamma^{\mu}\psi$: 4-vector under LT, $(-1)^{\mu}$ under PT \Rightarrow This is called a "vector".
- $\overline{\psi}\gamma_5\psi$: Scalar under LT, (-1) under PT \Rightarrow This is called a "pseudo-scalar".
- $\overline{\psi}\gamma^{\mu}\gamma_5\psi$: 4-vector under LT, $-(-1)^{\mu}$ under PT \Rightarrow This is called a "pseudo-vector".
- $\overline{\psi}\sigma^{\mu\nu}\psi$: Tensor (rank 2) under LT, $(-1)^{\mu}(-1)^{\nu}$ under PT \Rightarrow This is called a (second rank) "tensor".

<u>Note</u>: For free particles with momentum \vec{p} and positive energy E_p we have

 $\overline{\psi}(x)\Gamma\psi(x) = \frac{1}{V}\frac{mc^2}{E_p} (\overline{u}(\vec{p},s)\Gamma u(\vec{p},s)).$ Consider the case $\Gamma = \gamma^{\mu}\gamma_5$. For $\mu = i$ this is related to the spin operator (in units of \hbar) $\hat{\vec{S}} = \frac{1}{2}\vec{\Sigma} = \frac{1}{2} \begin{pmatrix} \vec{\sigma} & 0\\ 0 & \vec{\sigma} \end{pmatrix}$ by

$$\hat{\vec{S}} = \frac{1}{2} \gamma^0 \, \vec{\gamma} \, \gamma_5$$

The following pseudo-vector can then be called the "spin 4-vector":

$$S^{\mu}(p) = \frac{1}{2}\overline{u}(\vec{p},s)\gamma^{\mu}\gamma_5 u(\vec{p},s)$$
(7.5)

The reason for this is:

• In the rest system of the particle, $S^0(\vec{p}=0)=0$ and

$$\vec{S}(\vec{p}=0) = \frac{1}{2}u^{\dagger}(\vec{p}=0,s)\,\vec{\Sigma}\,u(\vec{p}=0,s) = \frac{1}{2}\phi(s)^{\dagger}\,\vec{\sigma}\,\phi(s) = \frac{1}{2}\vec{n}\equiv\vec{S}_{0}$$
(7.6)

which gives the spin direction in the rest system¹. Therefore, $S^{\mu}(\vec{p}=0) = (0, \vec{S}_0)$.

• The vector $S^{\mu}(p)$ is obtained from $S^{\mu}(\vec{p}=0)$ by a Lorentz transformation with velocity $\vec{v}=$ $-\vec{p}c/E_p$:

$$S^{\mu}(p) = \Lambda^{\mu}_{\ \nu}(\vec{v} = -\frac{\vec{pc}}{E_p}) \, S^{\nu}(\vec{p} = 0) = \left(\frac{\vec{p} \cdot \vec{S}_0}{mc}, \, \vec{S}_0 + \frac{\vec{p}\left(\vec{p} \cdot \vec{S}_0\right)}{m(E_p + mc^2)}\right) \tag{7.7}$$

Then the 3-vector $\vec{S}(p)$ is the "expectation value" of the spin operator between spinors, $\vec{S}(p)$ = $\frac{1}{2}u^{\dagger}(\vec{p},s)\vec{\Sigma}u(\vec{p},s)$, and depends on the momentum ! (Remember that $[H,\Sigma_i] \neq 0$, and the spinors are eigenvectors of the Hamiltonian H but not of the spin operator.)

¹Remember that the 2-component Pauli spinor $\phi(s)$ is an eigenvector of $\frac{1}{2}(\vec{\sigma} \cdot \vec{n})$ with eigenvalue $s = \pm 1/2$.