
6 Invariance of D.E. under coordinate transformations

Transformation of coordinates xµ and 4-momentum operator p̂µ = i~∂µ from a system S to another

system S ′:

x
′µ = Λµ

ν x
ν , p̂

′µ = Λµ
ν p̂

ν (6.1)

Here Λµ
ν is a “generalized” Lorentz transformation, including also rotations. For a pure rotation:

x0
′

= x0, x
′i = Ri

j x
j, where Ri

j is a 3× 3 rotation matrix:

Λµ
ν =

(
0 0
0 Ri

j

)
(6.2)

Basic requirement: The Dirac equation must keep its basic form under coordinate transformations!

S : (6 p̂−mc)ψ(x) = 0 (6.3)

S ′ : (6 p̂′ −mc)ψ′(x′) = 0 (6.4)

Define a 4× 4 matrix Ŝ such that

ψ′(x′) = Ŝ ψ(x) (6.5)

Then from Eq.(6.3) and (6.4) we obtain

Ŝ−1 6 p̂′ Ŝ = 6 p̂ (6.6)

From this, we derive a relation to determine Ŝ as follows: Using 6 p̂′ = γσ p′σ and Eq. (6.1),(
Ŝ−1 γσ Ŝ

)
Λ ν
σ p̂ν = γν p̂ν

⇒
(
Ŝ−1 γσ Ŝ

)
Λ ν
σ = γν

⇒
(
Ŝ−1 γσ Ŝ

)
Λ ν
σ Λµ

ν = Λµ
ν γ

ν

Using here the basic property of the matrix Λ (see Chapt.1, Eq.(1.8))

Λ ν
σ Λµ

ν = g µ
σ

we obtain finally (
Ŝ−1 γµ Ŝ

)
= Λµ

ν γ
ν (6.7)
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Note: This relation tells that the “matrix transformation” of γµ (l.h.s. of (6.7)) is the same as the

“4-vector transformation” of γµ (r.h.s. of (6.7)).

Take the dagger (†) of (6.7), and use

γµ† = γ0 γµ γ0 =
(
γ0,−~γ

)
Then we obtain from (6.7)

Ŝ† γ0γµ γ0
(
Ŝ−1

)†
= Λµ

ν γ
0 γν γ0

Multiply this from left and right by γ0 to get(
γ0 Ŝ† γ0

)
γµ
(
γ0
(
Ŝ−1

)†
γ0
)

= Λµ
ν γ

ν

Comparing this with Eq.(6.7) we obtain the relation

γ0 Ŝ† γ0 = Ŝ−1 (6.8)

We will discuss the form of the matrix Ŝ later.

A similar discussion is possible also for parity transformation:

xµ −→ x
′µ =

(
x0,−~x

)
= xµ = gµνx

ν

Comparing with (6.1), we see that for parity transformations we can substitute Λµ
ν −→ gµν . If we

define a 4× 4 matrix P̂ like (6.5) by

ψ′(x′) = P̂ ψ(x)

then we can use (6.7) to get (
P̂−1 γµ P̂

)
= gµν γ

ν = γµ =
(
γ0,−~γ

)
(6.9)

This is satisfied for

P̂ = γ0

Eq.(6.8) is also satisfied, because P̂ = P̂ † = P̂−1.
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7 Bilinear forms

A “bilinear form” is defined as

j(x) ≡ ψ(x) Γψ(x) (7.1)

where Γ is a Dirac matrix.

The following 16 Dirac matrices often appear in applications:

Γ =
(
1, γµ, σµν , γ5, γµγ5

)
(7.2)

Here σµν is defined by the commutator of two γ-matrices:

σµν =
i

2
[γµ, γν ] (7.3)

and γ5 = γ5 is defined by

γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
(7.4)

From these relations one can show, for example, that

{γµ, γ5} = 0 , [σµν , γ5] = 0 ,
[
Ŝ, γ5

]
= 0

Using then relations (6.7) and (6.9), one can show the properties of the bilinear forms (7.1) under

Lorentz transformations, rotations, and parity transformations.

For example, for Γ = c γµ, the bilinear (7.1) is the probability current jµ(x) = cψ(x) γµ ψ(x). After

a Lorentz transformation it becomes

j
′µ(x′) = c ψ

′†(x′)γ0γµψ′(x′)

= cψ†(x) Ŝ† γ0 γµ Ŝ ψ(x)

= c ψ†(x) γ0 Ŝ
−1 γµ Ŝ ψ(x)

= cΛµ
ν ψ(x) γν ψ(x) = cΛµ

ν j
ν(x)

Therefore the current jµ(x) behaves as a 4-vector under Lorentz transformations. Under pure ro-

tations, the density j0(x) is invariant, and ~j(x) behaves a 3-vector. Under parity transformations,

j0(x) is invariant, and ~j(x) changes the sign.

By similar calculations, one can obtain also the results for the behavior of other bilinears under

Lorentz transformations (LT) and parity transformations (PT). If we define (−1)µ ≡ 1 for µ = 0 and

(−1)µ ≡ −1 for µ = 1, 2, 3 we obtain
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• ψψ: Scalar under LT, scalar under PT ⇒ This is called a “scalar”.

• ψγµψ: 4-vector under LT, (−1)µ under PT ⇒ This is called a “vector”.

• ψγ5ψ: Scalar under LT, (−1) under PT ⇒ This is called a “pseudo-scalar”.

• ψγµγ5ψ: 4-vector under LT, −(−1)µ under PT ⇒ This is called a “pseudo-vector”.

• ψσµνψ: Tensor (rank 2) under LT, (−1)µ(−1)ν under PT ⇒ This is called a (second rank)

“tensor”.

Note: For free particles with momentum ~p and positive energy Ep we have

ψ(x)Γψ(x) =
1

V

mc2

Ep
(u(~p, s)Γu(~p, s)).

Consider the case Γ = γµγ5. For µ = i this is related to the spin operator (in units of ~)

~̂S =
1

2
~Σ =

1

2

(
~σ 0
0 ~σ

)
by

~̂S =
1

2
γ0 ~γ γ5

The following pseudo-vector can then be called the “spin 4-vector”:

Sµ(p) =
1

2
u(~p, s)γµγ5 u(~p, s) (7.5)

The reason for this is:

• In the rest system of the particle, S0(~p = 0) = 0 and

~S(~p = 0) =
1

2
u†(~p = 0, s) ~Σu(~p = 0, s) =

1

2
φ(s)† ~σ φ(s) =

1

2
~n ≡ ~S0 (7.6)

which gives the spin direction in the rest system1. Therefore, Sµ(~p = 0) =
(

0, ~S0

)
.

• The vector Sµ(p) is obtained from Sµ(~p = 0) by a Lorentz transformation with velocity ~v =

−~pc/Ep:

Sµ(p) = Λµ
ν(~v = − ~pc

Ep
)Sν(~p = 0) =

~p · ~S0

mc
, ~S0 +

~p
(
~p · ~S0

)
m(Ep +mc2)

 (7.7)

Then the 3-vector ~S(p) is the “expectation value” of the spin operator between spinors, ~S(p) =

1
2
u†(~p, s)~Σu(~p, s), and depends on the momentum ! (Remember that [H,Σi] 6= 0, and the spinors

are eigenvectors of the Hamiltonian H but not of the spin operator.)

1Remember that the 2-component Pauli spinor φ(s) is an eigenvector of 1
2 (~σ · ~n) with eigenvalue s = ±1/2.
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