8 Spinor transformations

Here we discuss the form of the spinor transformation matrix \hat{S}, which is defined by (see Sect. 6)

$$
\begin{equation*}
\left(\hat{S}^{-1} \gamma^{\mu} \hat{S}\right)=\Lambda_{\nu}^{\mu} \gamma^{\nu} \tag{8.1}
\end{equation*}
$$

1. Lorentz transformations: We will show that

$$
\begin{equation*}
\hat{S}=e^{-\frac{1}{2} \vec{\omega} \cdot \vec{\alpha}} \tag{8.2}
\end{equation*}
$$

satisfies (8.1). Here the vector $\vec{\omega}$ is in the direction of the velocity \vec{v}, and its form will be given below. $\vec{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}\right)$ are the Dirac matrices.

- Infinitesimal transformation: Setting $\hat{S} \rightarrow \hat{s}, \Lambda \rightarrow \lambda$, Eq.(8.1) becomes

$$
\begin{equation*}
\left(\hat{s}^{-1} \gamma^{\mu} \hat{s}\right)=\lambda^{\mu}{ }_{\nu} \gamma^{\nu} \tag{8.3}
\end{equation*}
$$

On the l.h.s. we can use

$$
\begin{equation*}
\hat{s}=1-\frac{1}{2} \vec{\omega} \cdot \vec{\alpha} \tag{8.4}
\end{equation*}
$$

Then the l.h.s. of (8.3), up to $\mathcal{O}(\vec{\omega})$, is:

$$
\begin{align*}
& \hat{s}^{-1} \gamma^{0} \hat{s}=\gamma^{0}-\vec{\omega} \cdot \vec{\gamma} \tag{8.5}\\
& \hat{s}^{-1} \gamma^{i} \hat{s}=\gamma^{i}-\omega^{i} \gamma^{0} \tag{8.6}
\end{align*}
$$

On the r.h.s. of (8.3), we need the infinitesimal form of the Lorentz transformation, $x^{\prime \mu}=\lambda^{\mu}{ }_{\nu} x^{\nu}$, up to $\mathcal{O}(\vec{v}):$

$$
\begin{align*}
x^{\prime 0} & =x^{0}-\frac{\vec{v}}{c} \cdot \vec{x}=\left(g_{\nu}^{0}+\frac{v_{k}}{c} g^{k}{ }_{\nu}\right) x^{\nu} \equiv \lambda_{\nu}^{0} x^{\nu} \tag{8.7}\\
x^{\prime i} & =x^{i}-\frac{v^{i}}{c} x^{0}=\left(g_{\nu}^{i}-\frac{v^{i}}{c} g_{\nu}^{0}\right) x^{\nu} \equiv \lambda_{\nu}^{i} x^{\nu} \tag{8.8}
\end{align*}
$$

Therefore $\lambda^{0}{ }_{\nu} \gamma^{\nu}$ and $\lambda^{i}{ }_{\nu} \gamma^{\nu}$ agree with the r.h.s. of (8.5) and (8.6), if $\vec{\omega}=\vec{v} / c$ for the infinitesimal case. Then Eq.(8.3) holds for the infinitesimal case.

From (8.7) and (8.8) we have

$$
\begin{equation*}
\lambda_{\nu}^{\mu}=g_{\nu}^{\mu}+\frac{\omega_{k}}{n}\left(g^{\mu 0} g_{\nu}^{k}-g^{\mu k} g_{\nu}^{0}\right) \equiv\left(1+\frac{\omega_{k}}{n} I^{k}\right)_{\nu}^{\mu} \tag{8.9}
\end{equation*}
$$

where we used $\frac{\vec{\omega}}{n}$ instead of $\vec{\omega}\left(n \rightarrow \infty\right.$ will be taken at the end), and the 4×4 matrix I^{k} is defined by

$$
\begin{equation*}
\left(I^{k}\right)^{\mu}{ }_{\nu}=g^{\mu 0} g_{\nu}^{k}-g^{\mu k} g_{\nu}^{0} \tag{8.10}
\end{equation*}
$$

If we take the coordinate system so that $\vec{\omega}$ (and \vec{v}) is along the x axis, $\vec{\omega}=(\omega, 0,0)$, then Eq. (8.9) becomes

$$
\begin{equation*}
\lambda_{\nu}^{\mu}=\left(1-\frac{\omega}{n} I\right)_{\nu}^{\mu} \tag{8.11}
\end{equation*}
$$

where the matrix I is given by

$$
I^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This matrix has the properties

$$
\left(I^{2}\right)_{\nu}^{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad I^{3}=I^{5}=\cdots=I, \quad I^{4}=I^{6}=\cdots=I^{2}
$$

- Finite transformations: The finite spinor transformation \hat{S} of (8.2) is obtained from the infinitesimal \hat{s} by

$$
\begin{equation*}
\hat{S}=\lim _{n \rightarrow \infty} \hat{s}^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2} \frac{\vec{\omega}}{n} \cdot \vec{\alpha}\right)^{n} \tag{8.12}
\end{equation*}
$$

Using then (8.3) n times, we get ($\lim _{n \rightarrow \infty}$ in the formula below)

$$
\begin{align*}
\hat{S}^{-1} \gamma^{\mu} \hat{S} & =\left(\hat{s}^{-1}\right)^{n} \gamma^{\mu} \hat{s}^{n}=\left(\hat{s}^{-1}\right)^{n-1}\left(\hat{s}^{-1} \gamma^{\mu} \hat{s}\right) \hat{s}^{n-1} \\
& =\lambda^{\mu}{ }_{\nu}\left(\hat{s}^{-1}\right)^{n-2}\left(\hat{s}^{-1} \gamma^{\nu} \hat{s}\right) \hat{s}^{n-2}=\cdots=\left(\lambda^{n}\right)^{\mu}{ }_{\nu} \gamma^{\nu} \tag{8.13}
\end{align*}
$$

Therfore, if $\lim _{n \rightarrow \infty} \lambda^{n}$ becomes the usual Lorentz matrix $\Lambda^{\mu}{ }_{\nu}$, Eq.(8.1) is satisfied. From (8.11) we obtain

$$
\begin{aligned}
\left(\lambda^{n}\right) & =\left(1-\frac{\omega}{n} I\right)^{n}=e^{-\omega I}=\cosh (\omega I)-\sinh (\omega I) \\
& =1+I^{2}\left(\frac{\omega^{2}}{2!}+\frac{\omega^{4}}{4!}+\ldots\right)-I\left(\omega+\frac{\omega^{3}}{3!}+\ldots\right) \\
& =\left(1-I^{2}\right)+I^{2}\left(1+\frac{\omega^{2}}{2!}+\frac{\omega^{4}}{4!}+\ldots\right)-I\left(\omega+\frac{\omega^{3}}{3!}+\ldots\right) \\
& =\left(\begin{array}{ccc}
0 & & \\
& 0 & \\
& & 1 \\
& & \\
& & 1
\end{array}\right)+I^{2} \cosh \omega-I \sinh \omega=\left(\begin{array}{ccc}
\cosh \omega & -\sinh \omega & 0 \\
-\sinh \omega & \cosh \omega & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

This agrees with the usual Lorentz matrix (for a tranformation along x axis, $\vec{v}=(v, 0,0)$) if

$$
\begin{equation*}
\sinh \omega=\gamma \frac{v}{c}, \quad \cosh \omega=\gamma \tag{8.14}
\end{equation*}
$$

with $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$. This concludes the check of Eq.(8.1) for Lorentz transformations.
2. Rotations: We will show that

$$
\begin{equation*}
\hat{S}=e^{-\frac{i}{2} \vec{\phi} \cdot \vec{\Sigma}} \tag{8.15}
\end{equation*}
$$

satisfies 1

$$
\begin{equation*}
\left(\hat{S}^{-1} \gamma_{i} \hat{S}\right)=R_{i j} \gamma_{j} \tag{8.16}
\end{equation*}
$$

Here the vector $\vec{\phi}$ is in the direction of the rotation axis, and will be given below. $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)=\gamma_{5} \vec{\alpha}$ are the relativistic spin matrices. Because $\left[\vec{\Sigma}, \gamma^{0}\right]=0$, Eq.(8.16) is the same as

$$
\begin{equation*}
\left(\hat{S}^{-1} \alpha_{i} \hat{S}\right)=R_{i j} \alpha_{j} \tag{8.17}
\end{equation*}
$$

- Infinitesimal rotation: Setting $\hat{S} \rightarrow \hat{s}, R \rightarrow r$, Eq.(8.17) becomes

$$
\begin{equation*}
\left(\hat{s}^{-1} \alpha_{i} \hat{s}\right)=r_{i j} \alpha_{j} \tag{8.18}
\end{equation*}
$$

On the l.h.s. we can use

$$
\begin{equation*}
\hat{s}=1-\frac{i}{2} \vec{\phi} \cdot \vec{\Sigma} \tag{8.19}
\end{equation*}
$$

Then the l.h.s. of (8.18), up to $\mathcal{O}(\vec{\phi})$, is:

$$
\begin{equation*}
\hat{s}^{-1} \alpha_{i} \hat{s}=\alpha_{i}+\frac{i}{2} \phi_{k}\left[\Sigma_{k}, \alpha_{i}\right]=\alpha_{i}-\epsilon_{i j k} \phi_{k} \alpha_{j} \tag{8.20}
\end{equation*}
$$

On the r.h.s. of (8.18), we need the infinitesimal form of the rotation matrix, $x_{i}^{\prime}=r_{i j} x_{j}$, up to $\mathcal{O}(\vec{\varphi})$, where the direction of $\vec{\varphi}$ is the rotation axis and φ is the rotation angle. From ordinary mechanics, this is given by

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{x}-\vec{x} \times \vec{\varphi} \Rightarrow x_{i}^{\prime}=\left(\delta_{i j}-\epsilon_{i j k} \varphi_{k}\right) x_{j} \equiv r_{i j} x_{j} \tag{8.21}
\end{equation*}
$$

[^0]Therefore $r_{i j} \alpha_{j}$ agrees with (8.20), if $\vec{\phi}=\vec{\varphi}$ for the infinitesimal case. Then Eq.(8.18) holds for the infinitesimal case.
If we take the coordinate system so that the rotation axis is the z direction $(\vec{\phi}=(0,0, \phi))$, then from (8.21) we have (with $\phi \rightarrow \phi / n$, and $n \rightarrow \infty$ at the end)

$$
\begin{equation*}
r_{i j}=\delta_{i j}-\epsilon_{3 i j} \frac{\phi}{n}=\left(1-\frac{\phi}{n} I\right)_{i j} \tag{8.22}
\end{equation*}
$$

where the 3×3 matrix I is defined by

$$
I_{i j}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix has the properties

$$
\left(I^{2}\right)_{i j}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad I^{3}=-I, \quad I^{4}=-I^{2}, \quad I^{5}=I, \ldots
$$

- Finite rotations: The finite rotation \hat{S} of (8.15) is obtained from the infinitesimal \hat{s} by

$$
\begin{equation*}
\hat{S}=\lim _{n \rightarrow \infty} \hat{s}^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{i}{2} \frac{\vec{\phi}}{n} \cdot \vec{\Sigma}\right)^{n} \tag{8.23}
\end{equation*}
$$

Using then (8.18) n times, we get ($\lim _{n \rightarrow \infty}$ in the formula below)

$$
\begin{align*}
\hat{S}^{-1} \alpha_{i} \hat{S} & =\left(\hat{s}^{-1}\right)^{n} \alpha_{i} \hat{s}^{n}=\left(\hat{s}^{-1}\right)^{n-1}\left(\hat{s}^{-1} \alpha_{i} \hat{s}\right) \hat{s}^{n-1} \\
& =r_{i j}\left(\hat{s}^{-1}\right)^{n-2}\left(\hat{s}^{-1} \alpha_{j} \hat{s}\right) \hat{s}^{n-2}=\cdots=\left(r^{n}\right)_{i j} \alpha_{j} \tag{8.24}
\end{align*}
$$

Therfore, if $\lim _{n \rightarrow \infty} r^{n}$ becomes the usual rotation matrix $R_{i j}$, Eq.(8.17) is satisfied. From (8.22) we obtain

$$
\begin{aligned}
\left(r^{n}\right) & =\left(1-\frac{\phi}{n} I\right)^{n}=e^{-\phi I}=\cosh (\phi I)-\sinh (\phi I) \\
& =1+I^{2}\left(\frac{\phi^{2}}{2!}-\frac{\phi^{4}}{4!}+\ldots\right)-I\left(\phi-\frac{\phi^{3}}{3!}+\ldots\right) \\
& =\left(1+I^{2}\right)-I^{2}\left(1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}+\ldots\right)-I\left(\phi-\frac{\phi^{3}}{3!}+\ldots\right) \\
& =\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1
\end{array}\right)-I^{2} \cos \phi-I \sin \phi=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

This agrees with the usual rotation matrix (for a rotation about the z axis, $\vec{\varphi}=(0,0, \varphi)$) if $\phi=\varphi=$ angle of rotation. This concludes the check of Eq.(8.17) for rotations.

[^0]: ${ }^{1}$ For the pure rotations, we will not distinguish between the 3 -vectors x^{i} and x_{i}.

