
8 Spinor transformations

Here we discuss the form of the spinor transformation matrix Ŝ, which is defined by (see Sect. 6)(
Ŝ−1 γµ Ŝ

)
= Λµ

ν γ
ν (8.1)

1. Lorentz transformations: We will show that

Ŝ = e−
1
2
~ω·~α (8.2)

satisfies (8.1). Here the vector ~ω is in the direction of the velocity ~v, and its form will be given

below. ~α = (α1, α2, α3) are the Dirac matrices.

• Infinitesimal transformation: Setting Ŝ → ŝ, Λ→ λ, Eq.(8.1) becomes

(
ŝ−1 γµ ŝ

)
= λµν γ

ν (8.3)

On the l.h.s. we can use

ŝ = 1− 1

2
~ω · ~α (8.4)

Then the l.h.s. of (8.3), up to O(~ω), is:

ŝ−1 γ0 ŝ = γ0 − ~ω · ~γ (8.5)

ŝ−1 γi ŝ = γi − ωiγ0 (8.6)

On the r.h.s. of (8.3), we need the infinitesimal form of the Lorentz transformation,

x
′µ = λµν x

ν , up to O(~v):

x
′0 = x0 − ~v

c
· ~x =

(
g0
ν +

vk
c
gkν

)
xν ≡ λ0

ν x
ν (8.7)

x
′i = xi − vi

c
x0 =

(
giν −

vi

c
g0
ν

)
xν ≡ λi ν x

ν (8.8)

Therefore λ0
νγ

ν and λi νγ
ν agree with the r.h.s. of (8.5) and (8.6), if ~ω = ~v/c for the

infinitesimal case. Then Eq.(8.3) holds for the infinitesimal case.

From (8.7) and (8.8) we have

λµν = gµν +
ωk
n

(
gµ0 gkν − gµk g0

ν

)
≡
(

1 +
ωk
n
Ik
)µ

ν
(8.9)
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where we used ~ω
n

instead of ~ω (n→∞ will be taken at the end), and the 4× 4 matrix Ik

is defined by (
Ik
)µ
ν

= gµ0 gkν − gµk g0
ν (8.10)

If we take the coordinate system so that ~ω (and ~v) is along the x axis, ~ω = (ω, 0, 0), then

Eq. (8.9) becomes

λµν =
(

1− ω

n
I
)µ

ν
(8.11)

where the matrix I is given by

Iµν =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


This matrix has the properties

(
I2
)µ
ν

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , I3 = I5 = · · · = I , I4 = I6 = · · · = I2

• Finite transformations: The finite spinor transformation Ŝ of (8.2) is obtained from the

infinitesimal ŝ by

Ŝ = lim
n→∞

ŝn = lim
n→∞

(
1− 1

2

~ω

n
· ~α
)n

(8.12)

Using then (8.3) n times, we get (limn→∞ in the formula below)

Ŝ−1γµ Ŝ =
(
ŝ−1
)n
γµ ŝn =

(
ŝ−1
)n−1 (

ŝ−1 γµ ŝ
)
ŝn−1

= λµν
(
ŝ−1
)n−2 (

ŝ−1 γν ŝ
)
ŝn−2 = · · · = (λn)µν γ

ν (8.13)

Therfore, if limn→∞ λ
n becomes the usual Lorentz matrix Λµ

ν , Eq.(8.1) is satisfied. From

(8.11) we obtain

(λn) =
(

1− ω

n
I
)n

= e−ω I = cosh (ω I)− sinh (ω I)

= 1 + I2

(
ω2

2!
+
ω4

4!
+ . . .

)
− I

(
ω +

ω3

3!
+ . . .

)
=

(
1− I2

)
+ I2

(
1 +

ω2

2!
+
ω4

4!
+ . . .

)
− I

(
ω +

ω3

3!
+ . . .

)

=


0

0
1

1

+ I2 coshω − I sinhω =


coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 1 0
0 0 0 1


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This agrees with the usual Lorentz matrix (for a tranformation along x axis, ~v = (v, 0, 0))

if

sinhω = γ
v

c
, coshω = γ (8.14)

with γ = 1/
√

1− v2/c2. This concludes the check of Eq.(8.1) for Lorentz transformations.

2. Rotations: We will show that

Ŝ = e−
i
2
~φ·~Σ (8.15)

satisfies1

(
Ŝ−1 γi Ŝ

)
= Rij γj (8.16)

Here the vector ~φ is in the direction of the rotation axis, and will be given below. ~Σ =

(
~σ 0
0 ~σ

)
= γ5 ~α

are the relativistic spin matrices. Because
[
~Σ, γ0

]
= 0, Eq.(8.16) is the same as(

Ŝ−1 αi Ŝ
)

= Rij αj (8.17)

• Infinitesimal rotation: Setting Ŝ → ŝ, R→ r, Eq.(8.17) becomes

(
ŝ−1 αi ŝ

)
= rij αj (8.18)

On the l.h.s. we can use

ŝ = 1− i

2
~φ · ~Σ (8.19)

Then the l.h.s. of (8.18), up to O(~φ), is:

ŝ−1 αi ŝ = αi +
i

2
φk [Σk, αi] = αi − εijk φk αj (8.20)

On the r.h.s. of (8.18), we need the infinitesimal form of the rotation matrix, x′i = rij xj,

up to O(~ϕ), where the direction of ~ϕ is the rotation axis and ϕ is the rotation angle. From

ordinary mechanics, this is given by

~x′ = ~x− ~x× ~ϕ⇒ x′i = (δij − εijk ϕk) xj ≡ rij xj (8.21)

1For the pure rotations, we will not distinguish between the 3-vectors xi and xi.
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Therefore rij αj agrees with (8.20), if ~φ = ~ϕ for the infinitesimal case. Then Eq.(8.18)

holds for the infinitesimal case.

If we take the coordinate system so that the rotation axis is the z direction (~φ = (0, 0, φ)),

then from (8.21) we have (with φ→ φ/n, and n→∞ at the end)

rij = δij − ε3ij
φ

n
=

(
1− φ

n
I

)
ij

(8.22)

where the 3× 3 matrix I is defined by

Iij =

 0 1 0
−1 0 0
0 0 0


This matrix has the properties

(
I2
)
ij

=

 −1 0 0
0 −1 0
0 0 0

 , I3 = −I , I4 = −I2 , I5 = I, . . .

• Finite rotations: The finite rotation Ŝ of (8.15) is obtained from the infinitesimal ŝ by

Ŝ = lim
n→∞

ŝn = lim
n→∞

(
1− i

2

~φ

n
· ~Σ

)n

(8.23)

Using then (8.18) n times, we get (limn→∞ in the formula below)

Ŝ−1αi Ŝ =
(
ŝ−1
)n
αi ŝ

n =
(
ŝ−1
)n−1 (

ŝ−1 αi ŝ
)
ŝn−1

= rij
(
ŝ−1
)n−2 (

ŝ−1 αj ŝ
)
ŝn−2 = · · · = (rn)ij αj (8.24)

Therfore, if limn→∞ r
n becomes the usual rotation matrix Rij, Eq.(8.17) is satisfied. From

(8.22) we obtain

(rn) =

(
1− φ

n
I

)n
= e−φ I = cosh (φ I)− sinh (φ I)

= 1 + I2

(
φ2

2!
− φ4

4!
+ . . .

)
− I

(
φ− φ3

3!
+ . . .

)
=

(
1 + I2

)
− I2

(
1− φ2

2!
+
φ4

4!
+ . . .

)
− I

(
φ− φ3

3!
+ . . .

)

=

 0
0

1

− I2 cosφ− I sinφ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


This agrees with the usual rotation matrix (for a rotation about the z axis, ~ϕ = (0, 0, ϕ))

if φ = ϕ = angle of rotation. This concludes the check of Eq.(8.17) for rotations.
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