
9 Projection operators for energy and spin

(i) Projection operators for positive and negative energy:

Remember from Sects. 3 and 4: The free Dirac equation has solutions with positive energy E = Ep =√
(mc2)2 + ~p2c2 (spinor w(+)(~p, s) = u(~p, s)) and negative energy E = −Ep = −

√
(mc2)2 + ~p2c2 (spinor

w(−)(~p, s) = v(−~p, s)).

Then the following matrices are projection operators for positive and negative energy:

Λ
(+)
αβ (~p) ≡

∑
s=±1/2

uα(~p, s) uβ(~p, s) (9.1)

Λ
(−)
αβ (~p) ≡ −

∑
s=±1/2

vα(~p, s) vβ(~p, s) (9.2)

• From the completeness relation of the spinors (for the proof, see the Appendix at the end of this

Section)
∑
s

(uα uβ − vα vβ) = δαβ we obtain

Λ
(+)
αβ (~p) + Λ

(−)
αβ (~p) = (1)αβ

and from the normalization u(~p, s′)u(~p, s) = −v(~p, s′) v(~p, s) = 1 and orthogonality

u(~p, s′) v(~p, s) = v(~p, s′)u(~p, s) = 0 we obtain(
Λ(+)

)2
= Λ(+) ,

(
Λ(−))2 = Λ(−)

Λ(+) Λ(−) = Λ(−) Λ(+) = 0

which are the properties of projection operators. We also obtain

Λ(+) u = u , Λ(+) v = 0

Λ(−) u = 0 , Λ(−) v = v

which confirms that Λ(+) projects onto the positive energy spinors u, and Λ(−) projects onto the

negative energy spinors v.

• The explicit forms of the Dirac matrices Λ(+) and Λ(−) can be obtained from the Dirac equation.

The basic equation is (6p−mc)w(~p, s) = 0, or separately for positive and negative energies:(
1

c
Epγ

0 − ~p · ~γ −mc

)
u(~p, s) = 0 (9.3)(

1

c
Epγ

0 − ~p · ~γ +mc

)
v(~p, s) = 0 (9.4)
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By comparing (9.3) with Λ(−) u = 0, we see that Λ(−) ∝
(
1
c
Epγ

0 − ~p · ~γ −mc
)
. By comparing (9.4)

with Λ(+) v = 0, we see that and Λ(+) ∝
(
1
c
Epγ

0 − ~p · ~γ +mc
)
. By using Λ(+) + Λ(−) = 1, we finally

obtain

Λ(+)(~p) =
1

2mc

(
1

c
Epγ

0 − ~p · ~γ +mc

)
=

1

2mc
(6p+mc) (9.5)

Λ(−)(~p) =
−1

2mc

(
1

c
Epγ

0 − ~p · ~γ −mc

)
=
−1

2mc
(6p−mc) (9.6)

where p0 ≡ Ep/c in the last forms of (9.5) and (9.6).

(ii) Projection operators for spin directions s = ±1/2:

Remember from Sect.7: The “spin 4-vector” is given by

Sµ(~p, s) =
1

2
u(~p, s)γµγ5 u(~p, s) ≡ s nµ(~p) (9.7)

= s

(
~p · ~n0

mc
, ~n0 +

~p (~p · ~n0)

m(Ep +mc2)

)
(9.8)

rest system→ (0, s ~n0) where s~n0 ≡
1

2

(
φ(s)† ~σ φ(s)

)
Here the unit vector ~n0 is the spin quantization axis, i.e., the spin direction in the rest system is given by

~S0 = s~n0 (where s = ±1/2). Note that the 4-vector nµ(~p) does not depend on s. The spinor φ(s) is a

2-component Pauli-spinor, chosen as an eigenvector of 1
2
~σ · ~n0.

Because nµ n
µ is Lorentz invariant, with the value nµ n

µ = −1 (clear in the rest system!), we obtain,

by multiplying (9.7) by nµ,

1

2
u(~p, s)γ5 6n(~p)u(~p, s) = s (where s = ±1

2
) (9.9)

Here we show that, more generally, the spinor u(~p, s) satisfies the following eigenvalue equation:(
1

2
γ5 6n(~p)

)
u(~p, s) = s u(~p, s) (9.10)

Therefore the operator
(
1
2
γ5 6n

)
is the relativistic generalization of 1

2
(~σ · ~n0), and the quantum number s

is its eigenvalue. The operator
(
1
2
γ5 6n

)
is called the “Pauli-Lubanski operator”. For example, an electron

beam polarized in the direction ~n0, as its comes out of an accelerator, is in an eigenstate of the Pauli-

Lubanski operator.

Homework: Show that [γ5 6n , H] u(~p, s) = 0, where H is the Dirac Hamiltonian, 6n = nµγµ where nµ is

defined in Eq.(9.7) and (9.8), and γ5 was defined in Sect. 7. Therefore, the Pauli-Lubanski operator does
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in general not commute with the Hamiltonian. Only if applied to the Dirac spinor u, the commutator

“effectively vanishes”, and s = ±1
2

is a conserved quantum number.

Proof of (9.10):

We use the spinor Lorentz transformation matrix Ŝ of Sect. 6. Here we need the spinor tranformation from

the rest system of the particle to the system where the particle has momentum ~p and velocity ~v = ~pc/Ep.

For this purpose, we must choose ~v = −~pc/Ep as the velocity of the observer (velocity of the Lorentz

transformation). Then we have the spinor transformation u(~p, s) = Ŝ(~v)u(~p = 0, s), and on the l.h.s. of

(9.10) we have

γ5 6n(~p)u(~p, s) = γ5 Ŝ(~v)
(
Ŝ−1(~v)6n(~p) Ŝ(~v)

)
u(~p = 0, s)

Use here the basic property of the matrix Ŝ (see Sect. 6, Eq.(6.7)) and of the Lorentz matrix (see Sect.

1):

Ŝ−1(~v)6n(~p) Ŝ(~v) =
(
Ŝ−1(~v) γµ Ŝ(~v)

)
nµ(~p) = (Λµ

ν(~v) γν) nµ(~p)

= Λ µ
ν (−~v) γν nµ(~p) = γν nν(~p = 0) = 6n(~p = 0)

By using the above relations, we obtain

1

2
γ5 6n(~p)u(~p, s) =

1

2
γ5 Ŝ(~v)6n(~p = 0)u(~p = 0, s)

= −1

2
Ŝ(~v)6n(~p = 0) γ5 u(~p = 0, s) =

1

2
Ŝ(~v) (~γγ5) · ~n u(~p = 0, s)

=
1

2
Ŝ(~v) (γ0~γγ5) · ~n u(~p = 0, s) =

1

2
Ŝ(~v)

(
~Σ · ~n

)
u(~p = 0, s)

= s Ŝ(~v)u(~p = 0, s) = s u(~p, s)

which proofs Eq.(9.10). [Note: In the 4th equality above, we used that the rest spinor u(~p = 0, s) has only

upper components (lower components are zero), therefore γ0 =

(
1 0
0 −1

)
acts like a unit matrix.]

Using relation (9.10), we can define the spin projection operators P± as follows:

P± =
1

2
(1± γ5 6n)

This satisfies the relations for projection operators:

P+ + P− = 1 , P+ P− =
1

4
(1 + 6n6n) =

1

4

(
1 + n2

)
= 0

because of n2 = −~n2 = −1. If P± acts on the spinor u(~p, s) we have

P± u(~p, s) =

(
1

2
± s
)
u(~p, s)
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and therefore P+u(~p, s = 1
2
) = u(~p, s = 1

2
), P−u(~p, s = 1

2
) = 0, and P−u(~p, s = −1

2
) = u(~p, s = −1

2
),

P−u(~p, s = 1
2
) = 0.

Because of Sµ(~p, s) = s nµ(~p) (see Eq.(9.7)), the projection operators can also be expressed as P+ ≡ P (s =

1
2
) and P− ≡ P (s = −1

2
), where

P (s) =
1

2
+ γ5 s 6n =

1

2
+ γ5 6S

Then we have the more compact relation

P (s)u(~p, s′) = δss′ u(~p, s)

(iii) Projection operator for positive energy and spin s = ±1/2: This is the following operator (see Eq.(9.1)):

Λ
(+)
αβ (~p, s) = uα(~p, s) uβ(~p, s)

The explicit form of this operator is obtained by multiplying the positive energy projection operator (9.1)

by the spin projection operator P (s). Using the explicit form of the positive energy projection operator,

given by (9.5), and the spin projection operator P (s) given above, we obtain

uα(~p, s) uβ(~p, s) =
1

2mc

[
(6p+mc)

(
1

2
+ γ5 6S

)]
αβ

This is a very useful relation, because one can express the expectation value of any Dirac matrix A between

spinors by a trace:

u(~p, s)Au(~p, s) = Tr (u(~p, s)u(~p, s)A) =
1

2mc
Tr

[
(6p+mc)

(
1

2
+ γ5 6S

)
A

]
******************************************************************************

Appendix: Proof of the completeness relation of spinors:

In the rest frame, the completeness is clear from the form of the spinors (see Sect. 3): Taking for example

the z-axis as the spin quantization axis, then u(~p = 0, s = 1
2
) = (1, 0, 0, 0), u(~p = 0, s = −1

2
) = (0, 1, 0, 0),

v(~p = 0, s = 1
2
) = (0, 0, 1, 0), v(~p = 0, s = 1

2
) = (0, 0, 0, 1) . Therefore,∑

s

(
uα(~p = 0, s)u†β(~p = 0, s) + vα(~p = 0, s)v†β(~p = 0, s)

)
= δαβ

⇒
∑
s

(uα(~p = 0, s)uβ(~p = 0, s)− vα(~p = 0, s)vβ(~p = 0, s)) = δαβ

where we used v(~p = 0, s) = v†(~p = 0, s)γ0 = −v†(~p = 0, s). By using the Lorentz transformation of
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spinors as above (transformation velocity ~v = −~pc/Ep) we obtain∑
s

(uα(~p, s)uβ(~p, s)− vα(~p, s)vβ(~p, s))

=
∑
s

Ŝαα′ uα′(~p = 0, s)uβ′(~p = 0, s) Ŝ−1β′β − Ŝαα′ vα′(~p = 0, s)vβ′(~p = 0, s) Ŝ−1β′β

= Ŝαα′ δα′β′ Ŝ−1β′β = δαβ

which is the completeness relation for the spinors used above.
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