9 Projection operators for energy and spin

(i) Projection operators for positive and negative energy:

Remember from Sects. 3 and 4: The free Dirac equation has solutions with positive energy $E=E_{p}=$ $\sqrt{\left(m c^{2}\right)^{2}+\vec{p}^{2} c^{2}}$ (spinor $\left.w^{(+)}(\vec{p}, s)=u(\vec{p}, s)\right)$ and negative energy $E=-E_{p}=-\sqrt{\left(m c^{2}\right)^{2}+\vec{p}^{2} c^{2}}$ (spinor $\left.w^{(-)}(\vec{p}, s)=v(-\vec{p}, s)\right)$.
Then the following matrices are projection operators for positive and negative energy:

$$
\begin{align*}
\Lambda_{\alpha \beta}^{(+)}(\vec{p}) & \equiv \sum_{s= \pm 1 / 2} u_{\alpha}(\vec{p}, s) \bar{u}_{\beta}(\vec{p}, s) \tag{9.1}\\
\Lambda_{\alpha \beta}^{(-)}(\vec{p}) & \equiv-\sum_{s= \pm 1 / 2} v_{\alpha}(\vec{p}, s) \bar{v}_{\beta}(\vec{p}, s) \tag{9.2}
\end{align*}
$$

- From the completeness relation of the spinors (for the proof, see the Appendix at the end of this Section) $\sum_{s}\left(u_{\alpha} \bar{u}_{\beta}-v_{\alpha} \bar{v}_{\beta}\right)=\delta_{\alpha \beta}$ we obtain

$$
\Lambda_{\alpha \beta}^{(+)}(\vec{p})+\Lambda_{\alpha \beta}^{(-)}(\vec{p})=(1)_{\alpha \beta}
$$

and from the normalization $\bar{u}\left(\vec{p}, s^{\prime}\right) u(\vec{p}, s)=-\bar{v}\left(\vec{p}, s^{\prime}\right) v(\vec{p}, s)=1$ and orthogonality $\bar{u}\left(\vec{p}, s^{\prime}\right) v(\vec{p}, s)=\bar{v}\left(\vec{p}, s^{\prime}\right) u(\vec{p}, s)=0$ we obtain

$$
\begin{aligned}
\left(\Lambda^{(+)}\right)^{2} & =\Lambda^{(+)}, \quad\left(\Lambda^{(-)}\right)^{2}=\Lambda^{(-)} \\
\Lambda^{(+)} \Lambda^{(-)} & =\Lambda^{(-)} \Lambda^{(+)}=0
\end{aligned}
$$

which are the properties of projection operators. We also obtain

$$
\begin{array}{llrl}
\Lambda^{(+)} u & =u, & & \Lambda^{(+)} v=0 \\
\Lambda^{(-)} u & =0, & & \Lambda^{(-)} v=v
\end{array}
$$

which confirms that $\Lambda^{(+)}$projects onto the positive energy spinors u, and $\Lambda^{(-)}$projects onto the negative energy spinors v.

- The explicit forms of the Dirac matrices $\Lambda^{(+)}$and $\Lambda^{(-)}$can be obtained from the Dirac equation. The basic equation is $(p p-m c) w(\vec{p}, s)=0$, or separately for positive and negative energies:

$$
\begin{align*}
& \left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}-m c\right) u(\vec{p}, s)=0 \tag{9.3}\\
& \left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}+m c\right) v(\vec{p}, s)=0 \tag{9.4}
\end{align*}
$$

By comparing (9.3) with $\Lambda^{(-)} u=0$, we see that $\Lambda^{(-)} \propto\left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}-m c\right)$. By comparing (9.4) with $\Lambda^{(+)} v=0$, we see that and $\Lambda^{(+)} \propto\left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}+m c\right)$. By using $\Lambda^{(+)}+\Lambda^{(-)}=1$, we finally obtain

$$
\begin{align*}
& \Lambda^{(+)}(\vec{p})=\frac{1}{2 m c}\left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}+m c\right)=\frac{1}{2 m c}(\not p+m c) \tag{9.5}\\
& \Lambda^{(-)}(\vec{p})=\frac{-1}{2 m c}\left(\frac{1}{c} E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}-m c\right)=\frac{-1}{2 m c}(\not p-m c) \tag{9.6}
\end{align*}
$$

where $p^{0} \equiv E_{p} / c$ in the last forms of (9.5) and (9.6).
(ii) Projection operators for spin directions $s= \pm 1 / 2$:

Remember from Sect.7: The "spin 4-vector" is given by

$$
\begin{align*}
S^{\mu}(\vec{p}, s) & =\frac{1}{2} \bar{u}(\vec{p}, s) \gamma^{\mu} \gamma_{5} u(\vec{p}, s) \equiv s n^{\mu}(\vec{p}) \tag{9.7}\\
& =s\left(\frac{\vec{p} \cdot \vec{n}_{0}}{m c}, \vec{n}_{0}+\frac{\vec{p}\left(\vec{p} \cdot \overrightarrow{n_{0}}\right)}{m\left(E_{p}+m c^{2}\right)}\right) \tag{9.8}\\
& \xrightarrow{\text { rest system }}\left(0, s \vec{n}_{0}\right) \quad \text { where } \quad s \vec{n}_{0} \equiv \frac{1}{2}\left(\phi(s)^{\dagger} \vec{\sigma} \phi(s)\right)
\end{align*}
$$

Here the unit vector \vec{n}_{0} is the spin quantization axis, i.e., the spin direction in the rest system is given by $\vec{S}_{0}=s \vec{n}_{0}$ (where $s= \pm 1 / 2$). Note that the 4 -vector $n^{\mu}(\vec{p})$ does not depend on s. The spinor $\phi(s)$ is a 2-component Pauli-spinor, chosen as an eigenvector of $\frac{1}{2} \vec{\sigma} \cdot \vec{n}_{0}$.

Because $n_{\mu} n^{\mu}$ is Lorentz invariant, with the value $n_{\mu} n^{\mu}=-1$ (clear in the rest system!), we obtain, by multiplying (9.7) by n_{μ},

$$
\begin{equation*}
\frac{1}{2} \bar{u}(\vec{p}, s) \gamma_{5} \not x(\vec{p}) u(\vec{p}, s)=s \quad\left(\text { where } \quad s= \pm \frac{1}{2}\right) \tag{9.9}
\end{equation*}
$$

Here we show that, more generally, the spinor $u(\vec{p}, s)$ satisfies the following eigenvalue equation:

$$
\begin{equation*}
\left(\frac{1}{2} \gamma_{5} \not x(\vec{p})\right) u(\vec{p}, s)=s u(\vec{p}, s) \tag{9.10}
\end{equation*}
$$

Therefore the operator $\left(\frac{1}{2} \gamma_{5} \not h\right)$ is the relativistic generalization of $\frac{1}{2}\left(\vec{\sigma} \cdot \vec{n}_{0}\right)$, and the quantum number s is its eigenvalue. The operator $\left(\frac{1}{2} \gamma_{5} \not h\right)$ is called the "Pauli-Lubanski operator". For example, an electron beam polarized in the direction \vec{n}_{0}, as its comes out of an accelerator, is in an eigenstate of the PauliLubanski operator.
Homework: Show that $\left[\gamma_{5} \not 九, H\right] u(\vec{p}, s)=0$, where H is the Dirac Hamiltonian, $\not \swarrow=n^{\mu} \gamma_{\mu}$ where n^{μ} is defined in Eq.(9.7) and (9.8), and γ_{5} was defined in Sect. 7. Therefore, the Pauli-Lubanski operator does
in general not commute with the Hamiltonian. Only if applied to the Dirac spinor u, the commutator "effectively vanishes", and $s= \pm \frac{1}{2}$ is a conserved quantum number.

Proof of (9.10):
We use the spinor Lorentz transformation matrix \hat{S} of Sect. 6. Here we need the spinor tranformation from the rest system of the particle to the system where the particle has momentum \vec{p} and velocity $\vec{v}=\vec{p} c / E_{p}$. For this purpose, we must choose $\vec{v}=-\vec{p} c / E_{p}$ as the velocity of the observer (velocity of the Lorentz transformation). Then we have the spinor transformation $u(\vec{p}, s)=\hat{S}(\vec{v}) u(\vec{p}=0, s)$, and on the l.h.s. of (9.10) we have

$$
\gamma_{5} \not h(\vec{p}) u(\vec{p}, s)=\gamma_{5} \hat{S}(\vec{v})\left(\hat{S}^{-1}(\vec{v}) \not \ldots(\vec{p}) \hat{S}(\vec{v})\right) u(\vec{p}=0, s)
$$

Use here the basic property of the matrix \hat{S} (see Sect. 6, Eq.(6.7)) and of the Lorentz matrix (see Sect. 1):

$$
\begin{aligned}
\hat{S}^{-1}(\vec{v}) \npreceq(\vec{p}) \hat{S}(\vec{v}) & =\left(\hat{S}^{-1}(\vec{v}) \gamma^{\mu} \hat{S}(\vec{v})\right) n_{\mu}(\vec{p})=\left(\Lambda_{\nu}^{\mu}(\vec{v}) \gamma^{\nu}\right) n_{\mu}(\vec{p}) \\
& =\Lambda_{\nu}^{\mu}(-\vec{v}) \gamma^{\nu} n_{\mu}(\vec{p})=\gamma^{\nu} n_{\nu}(\vec{p}=0)=\not ૂ(\vec{p}=0)
\end{aligned}
$$

By using the above relations, we obtain

$$
\begin{aligned}
\frac{1}{2} \gamma_{5} \not x(\vec{p}) u(\vec{p}, s) & =\frac{1}{2} \gamma_{5} \hat{S}(\vec{v}) \npreceq(\vec{p}=0) u(\vec{p}=0, s) \\
& =-\frac{1}{2} \hat{S}(\vec{v}) \npreceq(\vec{p}=0) \gamma_{5} u(\vec{p}=0, s)=\frac{1}{2} \hat{S}(\vec{v})\left(\vec{\gamma} \gamma_{5}\right) \cdot \vec{n} u(\vec{p}=0, s) \\
& =\frac{1}{2} \hat{S}(\vec{v})\left(\gamma_{0} \vec{\gamma} \gamma_{5}\right) \cdot \vec{n} u(\vec{p}=0, s)=\frac{1}{2} \hat{S}(\vec{v})(\vec{\Sigma} \cdot \vec{n}) u(\vec{p}=0, s) \\
& =s \hat{S}(\vec{v}) u(\vec{p}=0, s)=s u(\vec{p}, s)
\end{aligned}
$$

which proofs Eq. (9.10). [Note: In the 4th equality above, we used that the rest spinor $u(\vec{p}=0, s)$ has only upper components (lower components are zero), therefore $\gamma_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ acts like a unit matrix.]

Using relation (9.10), we can define the spin projection operators $P_{ \pm}$as follows:

$$
P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5} \not x\right)
$$

This satisfies the relations for projection operators:

$$
P_{+}+P_{-}=1, \quad P_{+} P_{-}=\frac{1}{4}(1+\not n h \chi)=\frac{1}{4}\left(1+n^{2}\right)=0
$$

because of $n^{2}=-\vec{n}^{2}=-1$. If $P_{ \pm}$acts on the spinor $u(\vec{p}, s)$ we have

$$
P_{ \pm} u(\vec{p}, s)=\left(\frac{1}{2} \pm s\right) u(\vec{p}, s)
$$

and therefore $P_{+} u\left(\vec{p}, s=\frac{1}{2}\right)=u\left(\vec{p}, s=\frac{1}{2}\right), P_{-} u\left(\vec{p}, s=\frac{1}{2}\right)=0$, and $P_{-} u\left(\vec{p}, s=-\frac{1}{2}\right)=u\left(\vec{p}, s=-\frac{1}{2}\right)$, $P _u\left(\vec{p}, s=\frac{1}{2}\right)=0$.
Because of $S^{\mu}(\vec{p}, s)=s n^{\mu}(\vec{p})$ (see Eq. (9.7)), the projection operators can also be expressed as $P_{+} \equiv P(s=$ $\left.\frac{1}{2}\right)$ and $P_{-} \equiv P\left(s=-\frac{1}{2}\right)$, where

$$
P(s)=\frac{1}{2}+\gamma_{5} s \npreceq x=\frac{1}{2}+\gamma_{5} \mathscr{}
$$

Then we have the more compact relation

$$
P(s) u\left(\vec{p}, s^{\prime}\right)=\delta_{s s^{\prime}} u(\vec{p}, s)
$$

(iii) Projection operator for positive energy and spin $s= \pm 1 / 2$: This is the following operator (see Eq.(9.1)):

$$
\Lambda_{\alpha \beta}^{(+)}(\vec{p}, s)=u_{\alpha}(\vec{p}, s) \bar{u}_{\beta}(\vec{p}, s)
$$

The explicit form of this operator is obtained by multiplying the positive energy projection operator (9.1) by the spin projection operator $P(s)$. Using the explicit form of the positive energy projection operator, given by (9.5), and the spin projection operator $P(s)$ given above, we obtain

$$
u_{\alpha}(\vec{p}, s) \bar{u}_{\beta}(\vec{p}, s)=\frac{1}{2 m c}\left[(\not p+m c)\left(\frac{1}{2}+\gamma_{5} \mathscr{P}\right)\right]_{\alpha \beta}
$$

This is a very useful relation, because one can express the expectation value of any Dirac matrix A between spinors by a trace:

$$
\bar{u}(\vec{p}, s) A u(\vec{p}, s)=\operatorname{Tr}(u(\vec{p}, s) \bar{u}(\vec{p}, s) A)=\frac{1}{2 m c} \operatorname{Tr}\left[(\not p+m c)\left(\frac{1}{2}+\gamma_{5} \mathscr{S}\right) A\right]
$$

Appendix: Proof of the completeness relation of spinors:
In the rest frame, the completeness is clear from the form of the spinors (see Sect. 3): Taking for example the z-axis as the spin quantization axis, then $u\left(\vec{p}=0, s=\frac{1}{2}\right)=(1,0,0,0), u\left(\vec{p}=0, s=-\frac{1}{2}\right)=(0,1,0,0)$, $v\left(\vec{p}=0, s=\frac{1}{2}\right)=(0,0,1,0), v\left(\vec{p}=0, s=\frac{1}{2}\right)=(0,0,0,1)$. Therefore,

$$
\begin{aligned}
& \sum_{s}\left(u_{\alpha}(\vec{p}=0, s) u_{\beta}^{\dagger}(\vec{p}=0, s)+v_{\alpha}(\vec{p}=0, s) v_{\beta}^{\dagger}(\vec{p}=0, s)\right)=\delta_{\alpha \beta} \\
\Rightarrow & \sum_{s}\left(u_{\alpha}(\vec{p}=0, s) \bar{u}_{\beta}(\vec{p}=0, s)-v_{\alpha}(\vec{p}=0, s) \bar{v}_{\beta}(\vec{p}=0, s)\right)=\delta_{\alpha \beta}
\end{aligned}
$$

where we used $\bar{v}(\vec{p}=0, s)=v^{\dagger}(\vec{p}=0, s) \gamma^{0}=-v^{\dagger}(\vec{p}=0, s)$. By using the Lorentz transformation of
spinors as above (transformation velocity $\vec{v}=-\vec{p} c / E_{p}$) we obtain

$$
\begin{aligned}
\sum_{s} & \left(u_{\alpha}(\vec{p}, s) \bar{u}_{\beta}(\vec{p}, s)-v_{\alpha}(\vec{p}, s) \bar{v}_{\beta}(\vec{p}, s)\right) \\
& =\sum_{s} \hat{S}_{\alpha \alpha^{\prime}} u_{\alpha^{\prime}}(\vec{p}=0, s) \bar{u}_{\beta^{\prime}}(\vec{p}=0, s) \hat{S}_{\beta^{\prime} \beta}^{-1}-\hat{S}_{\alpha \alpha^{\prime}} v_{\alpha^{\prime}}(\vec{p}=0, s) \bar{v}_{\beta^{\prime}}(\vec{p}=0, s) \hat{S}_{\beta^{\prime} \beta}^{-1} \\
& =\hat{S}_{\alpha \alpha^{\prime}} \delta_{\alpha^{\prime} \beta^{\prime}} \hat{S}_{\beta^{\prime} \beta}^{-1}=\delta_{\alpha \beta}
\end{aligned}
$$

which is the completeness relation for the spinors used above.

