10 Dirac equation in external electromagnetic field

Gauge principle: Any wave equation should be invariant under local (space-time dependent) “gauge

transformations” of the wave function:

Y() = ¢/ (x) = X () (10.1)

where ¢ is a constant, and x(x) is an arbitrary “gauge function”. This ¢'(x) should satisfy the same

wave equation as ¥(z).

If x is a constant (“global gauge transformation”), any wave equation is invariant under ¢» — ¢/'. But

if x depends on = (“local gauge transformation”), the free wave equations are not gauge invariant,

because of derivative terms. For example, because of the momentum operator ﬁ = —ihV in the free

Dirac equation
[(07 - ﬁ) e+ ﬁm&] b(z) = il (z) (10.2)

there is no invariance under the local gauge transformation (10.1).
In order to have invariance under (10.1), one has to introduce four “gauge fields” A*(z) = ((b(x), ff(:c)) :
which also transform under gauge transformations such that the wave equation is invariant. Physi-

cally, ¢(x) is the “scalar potential”, and /T(x) the “vector potential”. The new wave equation is

@ (7= 2A()) e+ Bme* + go(2)| v(@) = imi(x) (10.3)
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Here we show that (10.3) is invariant under (10.1) and, at the same time

— —

/ 1. A7 Y
¢(z) = ¢'(2) = o(z) - —X(2), A(z) = Al(z) = Az) + V x(x) (10.4)
We show that, if the Dirac equation (10.3) is satisfied, then also

(@ (5-24(@)) e+ pme + g0/ (2)] ¥'(w) = i (2) (10.5)

C

is satisfied.

e Using (10.1) and (10.4) we have

a-(F—24@)ve) = a-(F-2A@) - IVy) B ya)
= 0 a. (5-LA@) v()

where we used ]% = —ihV in the last step.



e In the same way we obtain
(g~ a6@) ) = (g~ a0l0) + Li@)) B o)
= et (i~ go(0)) v

Therefore, by cancelling an overall phase factor ¢'7eX(*) Eq.(10.5) becomes the same as (10.3). This
completes the proof of gauge invariance of Eq.(10.3).

Physically, the invariance under (10.4) means that the electric and magnetic fields E(z) and B(z)

do not change under the gauge transformation. This follows from

— —

E=-Ve-—-A,  B=vVxA (10.6)
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The “electromagnetic current” j#(x) = qi(x)y"4(z) is conserved (9,5 = 0), and is gauge invariant.
The Dirac equation (10.3) can be obtained from the free Dirac equation [62 pc + Bch] — ihy by

0 0
the “minimal substitutions” th— — ih— — ¢ ¢ and p’ p — p — —A, or: !
c

ot ot
s — L pe (10.7)
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The r.h.s. of (10.7) is called the covariant derivative. In covariant form, the free Dirac equation is

then changed by the presence of an external electromagnetic field according to
(A—mc>w:O:> (33—%4—7716)1/}20
c
11 Nonrelativistic limit and g-factor of electron

Consider the Dirac equation(10.3) for time-independent (static) fields ¢(#) and A(Z). Then, as usual,
(1) = e M )(F), and (10.3) becomes

[&- (ﬁ— %ff) c+6m62+q¢(ac)] Y = Ey(z) (11.1)
Denoting 7@ = (ﬁ'— %ff), and writing 1 in the form 1) = (¢, x), we obtain from (11.1)

7)) x(@) = (E—mc—qp) o(7) (11.2)
(E +mc? — quﬁ) X (%) (11.3)
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From (11.3) we obtain

. c(0-7) .
X (Z) @ (T) (11.4)

:E+mc2—q¢f

Define the “binding energy” (¢) by E = mc* + . (Note: This ¢ is the energy eigenvalue which

appears in the Schrodinger equation.) Then we consider the nonrelativistic limit: All energies (like
g, qo(¥)) are small compared to the rest energy mc?. Then, from (11.4),

(7 -7)

2me

X(T) =~ o(T)

and from (11.2) we obtain the Schrodinger-like equation for p(Z) as
(G- 7) . . .
o T a0 | (@) = () (11.5)
What is (¢ - @)° ? Using the identity (¢ - @) <c_r' : E) = (EL’- 5) +1i0 - (EL’ X g), we obtain
(G- %) =7 +id - (F x 7)

where (7 x ) is given by 2

) = (5-10)x (519
= U(px At Axp) = -2 (5 4)
_ @(6 A) = Tap
C C

where B is the magnetic field. Then the Schrédinger-type equation (11.5) becomes

<ﬁ_ %@2 _gh

7. B T) = 7 11.
5 5ma 0 +q9| ¢(T) = cp(7) (11.6)

If we neglect the term oc A2 (weak magnetic field), we have

(5~ ﬂg)z ~ (5 A4 A 5)

C
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- 5 P 29 » 4
_ ﬁa_ﬂ( .A>__qA.p (11.7)
C C
2Note that 1%' — —ihV acts on all functions to the right, not only on A but also on the wave function . Therefore,

ﬁ’x A= (ﬁ’x A’) — A x ]3’, where in the first term (ﬁ’x A') the momentum operator acts only on A.



For a uniform magnetic field B we can choose the vector potential as follows 3:
1

A= (E X f) (11.8)

In this gauge, (]3’ /Y) =0, and Eq.(11.7) becomes

~ N\ 2 ~ N ~
(ﬁ—@A) gﬁz—g(Bxf 7
C C
C C

where L = Tx ﬁ is the orbital angular momentum operator. Using also the spin operator S = (h/2) 3,

we finally obtain for (11.6):

72 Lo
[p— —ppB- (L + 28) %_L 49| o(7) = ep(d) (11.9)

2m

Here pup = qh/(2mc) is the Bohr magneton. The interaction with the magnetic field in (11.9) can be

expressed as —upg ([i . é), where i is the magnetic moment operator given by

i— % (E+ 2§> = % (ggi+gs §> (11.10)

Here the orbital g-factor g, = 1, and the spin g-factor g, = 2. The prediction that g, = 2 for the
electron (and also the muon) was the first success of the Dirac equation. Eq.(11.10) was known

before the Dirac equation, and is called the “Pauli equation”.

Homework: One can “derive” the Pauli equation Eq.(11.9) also from the nonrelativistic free

Schrodinger wave equation

PO
o o(Z,t) = zﬁago(x, t) (11.11)

by the following trick: Use the identity for the Pauli spin matrices (& - @) = a? for the case where the
vector @ is the momentum operator: @ = p. Use this trick in Eq.(11.11), and perform the minimal
substitutions given above Eq.(10.7). Assume that the external electromagnetic fields are static to

write (&, t) = e~/h

©(Z), and show that ¢(Z,t) satisfies the Pauli equation (11.9). - Of course, this
is not a very convincing proof, but it shows that g; = 2 can be understood intuitively also without

the Dirac equation.

3We can confirm that (11.8) satisfies B = V x A. Eq.(11.8) is a special gauge, where (]3 /Y) =0, and is called the
“transverse gauge”.



