
6 S-matrix for scattering of electron in external field

Remember the following formula for the time evolution of an electron wave function (positive energy)

in an external electromagnetic field Aµ (see Sect. 14 of spring semester, Eqs.(14.5) and (14.6)):

i

∫
d3x′ SF (x− x′) γ0 Ψn(x′) = θ(t− t′) Ψn(x) (6.1)

i

∫
d3x Ψn(x) γ0 SF (x− x′) = θ(t− t′) Ψn(x′) (6.2)

Here SF is the exact Feynman propagator of the electron in an external field, and Ψ(x) is the exact

wave function of the electron.

Consider the process of electron scattering by an external electromagnetic field, which may be created

by another particle (for example, a nucleus):

time (t)

0

detector

Here the lines with arrows represent the electron, and the shaded area represents the space-time

region of the interaction between the electron and the electromagnetic field. Suppose we have an

exact wave function for the electron (Ψi(x)), which satisfies the following initial condition for time

t→ −∞:

Ψi(x)
(t→−∞)−→ ψi(x) (6.3)

Here ψi(x) is a free (positive energy) solution of the Dirac equation. Take the limit t′ → −∞ on

both sides of Eq.(6.1) for n = i:

Ψi(x) = i lim
t′→−∞

∫
d3x′ SF (x− x′) γ0 ψi(x

′)

Insert here the Dyson equation SF = SF0 +SF (e6A)SF0 (see Sect. 14 of spring semester, Eq.(14.13)):

Ψi(x) = i lim
t′→−∞

∫
d3x′

[
SF0(x− x′) +

∫
d4y SF (x− y)(e6A(y))SF0(y − x′)

]
γ0 ψi(x

′) (6.4)
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On the other hand, Eq.(6.1) for t′ → −∞ and Aµ = 0 (free electron) becomes

i lim
t′→−∞

∫
d3x′ SF0(x− x′) γ0 ψi(x

′) = ψi(x)

Using this in Eq.(6.4) we get

Ψi(x) = ψi(x) +

∫
d4y SF (x− y) (e6A(y))ψi(y) (6.5)

At time t → +∞, place a detector which can filter out any free state ψf (x) from the exact wave

function (6.5). The probability amplitude to detect a particular state ψf (x), which is contained in

the wave function (6.5), is given by

Sfi ≡ lim
t→∞

∫
d3xψ†f (x) Ψi(x) (6.6)

For all possible states (f, i) this is a matrix, which is called the S-matrix. Inserting here the formula

(6.5) we obtain

Sfi = lim
t→∞

∫
d3xψ†f (x)

[
ψi(x) +

∫
d4y SF (x− y) (e6A(y))ψi(y)

]
= δfi + lim

t→∞

∫
d3x

∫
d4y ψ†f (x)SF (x− y) (e6A(y))ψi(y) (6.7)

where we used the orthogonality of the free electron wave functions. Insert here the Dyson equation

in the form (see Sect. 14 of spring semester, Eq.(14.10))

SF (x− y) = SF0(x− y) +

∫
d4z SF0(x− z) (e6A(z))SF (z − y)

and use Eq.(6.2) for t→∞ and Aµ = 0 (free electron):

lim
t→∞

∫
d3xψ†f (x)SF0(x− y) = −iψf (y)

Then, from (6.7), we obtain the following convenient form of the S-matrix:

Sfi = δfi − i
∫

d4y ψf (y)(e6A(y))ψi(y)− i
∫

d4y

∫
d4z ψf (z) (e6A(z))SF (z − y) (e6A(y))ψi(y)

(6.8)

Note that in (6.8) all wave functions are free wave functions, but SF (z − y) is the exact Feynman

propagator, which can be expanded in perturbation theory according to the Dyson equation SF =

SF0 + SF0(e6A)SF0 + . . . .
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Because the Feynman propagator SF (x−z) has two time orderings (see Sect. 13 of spring semester),

the interaction terms in Eq.(6.8) can be graphically expressed as follows (up to second order pertur-

bation theory):

+ +y

z

y
z

y

Here time is running from bottom to top, and the dashed lines represent the (instantaneous) inter-

actions of the electron with the external field (for example, the Coulomb potential of a nucleus).

Example: Scattering by a Coulomb potential (produced by a heavy nucleus).

ψi(x) =

√
m

Ep

1√
V
u(~p, s) e−i(Epy0−~p·~y)

ψf (x) =

√
m

Ep′

1√
V
u(~p′, s′) e−i(Ep′y

0−~p′·~y)

Aµ(y) =

(
A0 = − Ze

4π|~y|
, ~A = 0

)
(6.9)

Then the S-matrix (6.8), for f 6= i, to order e2 becomes:

Sfi = iZ
e2

4π

1

V

√
m2

EpEp′

(
u(~p′, s′) γ0 u(~p, s)

) ∫ d4y

|~y|
ei(Ep′−Ep)y0 e−i(~p

′−~p)·~y

Use here the relations ∫ +∞

−∞
dy0 ei(Ep′−Ep)y0 = (2π) δ(Ep′ − Ep) (6.10)∫

d3y

|~y|
e−i~q·~y =

4π

~q2
(~q = ~p′ − ~p)

Then we obtain

Sfi =
iZe2

V

m

Ep

u(~p′, s′) γ0 u(~p, s)

~q2
(2π) δ(Ep′ − Ep) (6.11)
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The probability for electron scattering i = (~p, s)→ f = (~p′, s′) is then given by |Sfi|2. However,

in a finite volume V , a state with sharp value of ~p′ cannot be observed (because of the uncertainty

relation). To calculate the probability for electron scattering, we need the number of final states in

the volume V and in the momentum interval d3p′. This number is called the phase space factor.

Consider first only 1 space dimension:

In classical physics, each point of the phase space (x, p) corresponds to one state. In quantum

mechanics, because of the uncertainty principle dx dp > h = 2π~, each cell of size h corresponds to

one state:

x

p

dx

dp

cell dx dp = h 

corresponds to 1 state 

with spin up (or down)

.

In 3 space dimensions:

The number of states, with spin up or spin down, in the volume V and in the momentum interval

d3p′, is equal to the number of cells in the phase space volume (V · d3p′), and is given by

V d3p′

(2π~)3 (6.12)

Therefore, the probability for scattering into any of these V d3p′

(2π~)3
states is given by

|Sfi|2
V d3p′

(2π~)3 (6.13)
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Definition of differential cross section:

d3σ ≡ number of particles scattered (per unit time) into d3p′

number of incoming particles (per, time, per area)

= Nin

(
|Sfi|2 ·

V d3p′

(2π~)3

1

∆T

)
/|~jin| (6.14)

Here

• ∆T is the observation time ' time it takes the electron to go from the accelerator to the

detector. For a distance L ' 1 m, we have ∆T > 10−8 s;

• Nin is the number is incoming particles per unit time ;

• ~jin is the incoming flux of particles:

~jin =
(
ψi(x)~γ ψi(x)

)
·Nin =

m

Ep

1

V
(u(~p, s)~γu(~p, s)) ·Nin

=
~p

Ep

Nin

V
= ~v

Nin

V

where ~v is the velocity of the incoming electrons.

Then we get the differential cross section as follows:

d3σ =
V

v
|Sfi|2 ·

V d3p′

(2π~)3

1

∆T

=
d3p′

v(2π)3

1

∆T

(
Ze2

)2
(
m

Ep

)2 |u(~p′, s′)γ0u(~p, s)|2

~q4
(2πδ(Ep′ − Ep))2 (6.15)

What is the meaning of the square of the delta function?

If the observation time is ∆T ' 10−8 s, then the integration over time (see Eq.(1.10)) should be

replaced by
∫ +∆T/2

−∆T/2
dy0, and therefore

(2πδ(Ep′ − Ep))2 −→

(∫ +∆T/2

−∆T/2

dt ei(Ep′−Ep)t

)2

= 4
sin2 Ep′−Ep

2
∆T

(Ep′ − Ep)2 = (2π∆T )

(
sin2 ∆E

2
∆T

π (∆E)2

2
∆T

)
(6.16)

Here ∆E ≡ Ep′ − Ep. Consider now the following expression as a function of ∆E:

sin2 ∆E
2

∆T

π (∆E)2

2
∆T

=
∆T

2π

(
sin ∆E

2
∆T

∆E
2

∆T

)2
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(In the figure, t ≡ ∆T , and Ω ≡ ∆E.) Because ∆T ' 10−8 s is a “macroscopic time”, we have 1

2π~
∆T
' 2π×10−7 eV, which is very small compared to a typical resolution energy of ' 1 eV. Therefore,

2π~
∆T

is practically zero, which means that the macroscopic time ∆T can be replaced by ∆T → ∞.

Then we can use the relation

sin2 ∆E
2

∆T

π (∆E)2

2
∆T

∆T→∞−→ δ(∆E)

Therefore, finally, we get for (6.16),

(2πδ(Ep′ − Ep))2 ∆T→∞−→ (2π∆T ) δ(Ep′ − Ep) (6.17)

Note: A shorthand “derivation” of this result is simply as follows:

(2πδ(Ep′ − Ep))2 = (2πδ(Ep′ − Ep)) (2πδ(Ep′ − Ep))

= (2πδ(Ep′ − Ep)) (2πδ(0)) ≡ (2πδ(Ep′ − Ep)) ∆T

Physically, it means that if we observe the particle for a macroscopic time ∆T , there is no uncertainty

of the energy. (Note that the static Coulomb potential cannot transfer energy, so we must get energy

conservation: Ep = Ep′ .)

Using the result (6.17) in the differential cross section (6.15), and d3p′ = p
′2dp′ dΩ′ with p = p′ from

the energy conserving delta function, we get (with α ≡ e2/(4π) ' 1/137)

d3σ

dp′ dΩ′
=

4Z2α2p2

v

(
m

Ep

)2

δ(Ep′ − Ep)
|u(~p′, s′)γ0u(~p, s)|2

~q4

1Note that ~ ' 10−15 eV · s.
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We can integrate this over p′, using δ(Ep′ − Ep) = 1
v
δ(p′ − p) to get the usual “differential cross

section”:

dσ

dΩ′
≡ d2σ

dΩ′
=

4Z2α2m2

~q4
|u(~p′, s′)γ0u(~p, s)|2 (6.18)

Here the momentum transfer is given in terms of the scattering angle θ by

~q2 = (~p′ − ~p)2
= 2p2 (1− cos θ) = 4p2 sin2 θ

2
(6.19)

In the nonrelativistic limit we have u(~p′, s′)γ0u(~p, s) ' 1, and Eq.(6.18) becomes the Rutherford cross

section.

Relativistic effects from electron spin, Mott cross section:

Here we calculate the “unpolarized cross section”:

• The initial electrons have equal probability for spin up (s = 1/2) and spin down (s = −1/2)

⇒ average 1
2

∑
s;

• Both spin directions of the final electron are observed, i.e., the detector does not differentiate

between the spin directions

⇒ sum
∑

s.

Then the unpolarized differential cross section becomes

dσ

dΩ′
=

2Z2α2m2

~q4

∑
ss′

|u(~p′, s′)γ0u(~p, s)|2 (6.20)

We now use the following identity for the square of spinor matrix elements: If Γ is a Dirac γ-matrix,

then

|u(f) Γu(i)|2 = (u(f) Γu(i))
(
ut(f)γ0 Γ∗ u∗(i)

)
= (u(f) Γu(i))

(
u†(i) Γ† γ0u(f)

)
= (u(f) Γu(i))

(
u(i)

(
γ0Γ†γ0

)
u(f)

)
If we define Γ ≡ γ0Γ†γ0, and indicate the Dirac indices α, β, α′, β′ explicitly, we obtain∑

ss′

|u(f) Γu(i)|2 =
∑
ss′

uα(~p′, s′)Γαβ uβ(~p, s)uα′(~p, s)Γα′β′ uβ′(~p′, s′)

= Tr
(
Λ+(~p′) Γ Λ+(~p) Γ

)
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where Tr means the trace over the Dirac indices, and the positive energy projection operator is given

by (see Sect. 9 of spring semester, Eqs.(9.1) and (9.5))

Λ+(~p) =
6p+m

2m
(here 6p = Epγ

0 − ~p · ~γ)

In our case (Eq.(6.20)) we have Γ = Γ = γ0, and the unpolarized differential cross section becomes

dσ

dΩ
=
Z2α2

2~q4
Tr
[
(6p′ +m) γ0 (6p+m) γ0

]
(6.21)

There are many theorems about traces of products of γ-matrices Γ = (γ0, γi). Here we just need the

following two theorems:

• The trace of a product of an odd number of Γ - matrices is zero:

Tr (Γ1 . . .Γn) = 0 if n = odd (6.22)

Proof: Using the matrix γ5 = iγ0γ1γ2γ3, which satisfies γ2
5 = 1 and {γ5,Γ} = 0, and the

property of the trace Tr(AB) = Tr(BA), we have for n=odd

Tr (Γ1 . . .Γn) = Tr (Γ1 . . .Γnγ5γ5)

= Tr (γ5Γ1 . . .Γnγ5) = (−1)n Tr (Γ1 . . .Γn) = −Tr (Γ1 . . .Γn) = 0

• For the product of two and four γ-matrices we have the following formulas:

Tr (γµγν) = 4 gµν (6.23)

Tr
(
γµγνγλγσ

)
= 4

(
gµνgλσ − gµλgνσ + gµσgνλ

)
(6.24)

Proof of (6.23): Using Tr(AB) = Tr(BA) and the anticommutation relations of γ-matrices, we

have

Tr (γµγν) =
1

2
Tr{γµ, γν} = gµν Tr 1 = 4 gµν

Eq.(6.24) can be derived by using similar methods.

Note that the formula (6.23) gives the following result for any 4-vectors a, b:

Tr (6a6b) = aµbνTr (γµγν) = 4aµbν g
µν = 4a · b

In the same way, the formula (6.24) gives the following result for any 4-vectors a, b, c, d:

Tr (6a 6b 6c 6d) = 4 (a · b c · d− a · c b · d+ a · d b · c)
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Now we can continue with the calculation of the unpolarized cross section (6.21): The trace factor

becomes

Tr
[
(6p′ +m) γ0 (6p+m) γ0

]
= Tr

(
m2 + 6p′γ06pγ0

)
= 4

(
m2 + 2EpEp′ − p · p′

)
(6.25)

Using now (with E ≡ Ep = Ep′)

p · p′ = E2 − ~p2 cos θ = m2 + ~p2 (1− cos θ) = m2 + 2~p2 sin2 θ

2

we finally get for the trace factor (6.25)

Tr
[
(6p′ +m) γ0 (6p+m) γ0

]
= 8E2

(
1− ~v2 sin2 θ

2

)
Inserting this into the cross section (6.21), and using also the relation (6.19), we finally obtain

dσ

dΩ
=

Z2α2

4p2v2 sin4 θ
2

(
1− v2 sin2 θ

2

)
(6.26)

Here we denote the magnitude squared of 3-vectors by p2 ≡ ~p2 and v2 ≡ ~v2. In our natural units,

α = e2/(4π) ' 1/137 is the “fine structure constant”.

The formula (6.26) is called the Mott cross section, and describes elastic scattering of electrons

on a Coulomb potential (for example, produced by a heavy spinless nucleus).
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