6 S-matrix for scattering of electron in external field

Remember the following formula for the time evolution of an electron wave function (positive energy) in an external electromagnetic field A^{μ} (see Sect. 14 of spring semester, Eqs.(14.5) and (14.6)):

$$
\begin{align*}
& i \int \mathrm{~d}^{3} x^{\prime} S_{F}\left(x-x^{\prime}\right) \gamma^{0} \Psi_{n}\left(x^{\prime}\right)=\theta\left(t-t^{\prime}\right) \Psi_{n}(x) \tag{6.1}\\
& i \int \mathrm{~d}^{3} x \bar{\Psi}_{n}(x) \gamma^{0} S_{F}\left(x-x^{\prime}\right)=\theta\left(t-t^{\prime}\right) \bar{\Psi}_{n}\left(x^{\prime}\right) \tag{6.2}
\end{align*}
$$

Here S_{F} is the exact Feynman propagator of the electron in an external field, and $\Psi(x)$ is the exact wave function of the electron.

Consider the process of electron scattering by an external electromagnetic field, which may be created by another particle (for example, a nucleus):

Here the lines with arrows represent the electron, and the shaded area represents the space-time region of the interaction between the electron and the electromagnetic field. Suppose we have an exact wave function for the electron $\left(\Psi_{i}(x)\right)$, which satisfies the following initial condition for time $t \rightarrow-\infty$:

$$
\begin{equation*}
\Psi_{i}(x) \xrightarrow{(t \rightarrow-\infty)} \psi_{i}(x) \tag{6.3}
\end{equation*}
$$

Here $\psi_{i}(x)$ is a free (positive energy) solution of the Dirac equation. Take the limit $t^{\prime} \rightarrow-\infty$ on both sides of Eq.(6.1) for $n=i$:

$$
\Psi_{i}(x)=i \lim _{t^{\prime} \rightarrow-\infty} \int \mathrm{d}^{3} x^{\prime} S_{F}\left(x-x^{\prime}\right) \gamma^{0} \psi_{i}\left(x^{\prime}\right)
$$

Insert here the Dyson equation $S_{F}=S_{F 0}+S_{F}(e A) S_{F 0}$ (see Sect. 14 of spring semester, Eq.(14.13)):

$$
\begin{equation*}
\Psi_{i}(x)=i \lim _{t^{\prime} \rightarrow-\infty} \int \mathrm{d}^{3} x^{\prime}\left[S_{F 0}\left(x-x^{\prime}\right)+\int \mathrm{d}^{4} y S_{F}(x-y)(e A(y)) S_{F 0}\left(y-x^{\prime}\right)\right] \gamma^{0} \psi_{i}\left(x^{\prime}\right) \tag{6.4}
\end{equation*}
$$

On the other hand, Eq.(6.1) for $t^{\prime} \rightarrow-\infty$ and $A^{\mu}=0$ (free electron) becomes

$$
i \lim _{t^{\prime} \rightarrow-\infty} \int \mathrm{d}^{3} x^{\prime} S_{F 0}\left(x-x^{\prime}\right) \gamma^{0} \psi_{i}\left(x^{\prime}\right)=\psi_{i}(x)
$$

Using this in Eq.(6.4) we get

$$
\begin{equation*}
\Psi_{i}(x)=\psi_{i}(x)+\int \mathrm{d}^{4} y S_{F}(x-y)(e A(y)) \psi_{i}(y) \tag{6.5}
\end{equation*}
$$

At time $t \rightarrow+\infty$, place a detector which can filter out any free state $\psi_{f}(x)$ from the exact wave function (6.5). The probability amplitude to detect a particular state $\psi_{f}(x)$, which is contained in the wave function (6.5), is given by

$$
\begin{equation*}
S_{f i} \equiv \lim _{t \rightarrow \infty} \int \mathrm{~d}^{3} x \psi_{f}^{\dagger}(x) \Psi_{i}(x) \tag{6.6}
\end{equation*}
$$

For all possible states (f, i) this is a matrix, which is called the S-matrix. Inserting here the formula (6.5) we obtain

$$
\begin{align*}
S_{f i} & =\lim _{t \rightarrow \infty} \int \mathrm{~d}^{3} x \psi_{f}^{\dagger}(x)\left[\psi_{i}(x)+\int \mathrm{d}^{4} y S_{F}(x-y)(e A(y)) \psi_{i}(y)\right] \\
& =\delta_{f i}+\lim _{t \rightarrow \infty} \int \mathrm{~d}^{3} x \int \mathrm{~d}^{4} y \psi_{f}^{\dagger}(x) S_{F}(x-y)(e A(y)) \psi_{i}(y) \tag{6.7}
\end{align*}
$$

where we used the orthogonality of the free electron wave functions. Insert here the Dyson equation in the form (see Sect. 14 of spring semester, Eq.(14.10))

$$
S_{F}(x-y)=S_{F 0}(x-y)+\int \mathrm{d}^{4} z S_{F 0}(x-z)(e A(z)) S_{F}(z-y)
$$

and use Eq.(6.2) for $t \rightarrow \infty$ and $A^{\mu}=0$ (free electron):

$$
\lim _{t \rightarrow \infty} \int \mathrm{~d}^{3} x \psi_{f}^{\dagger}(x) S_{F 0}(x-y)=-i \bar{\psi}_{f}(y)
$$

Then, from (6.7), we obtain the following convenient form of the S-matrix:

$$
\begin{equation*}
S_{f i}=\delta_{f i}-i \int \mathrm{~d}^{4} y \bar{\psi}_{f}(y)(e A(y)) \psi_{i}(y)-i \int \mathrm{~d}^{4} y \int \mathrm{~d}^{4} z \bar{\psi}_{f}(z)(e A(z)) S_{F}(z-y)(e A(y)) \psi_{i}(y) \tag{6.8}
\end{equation*}
$$

Note that in (6.8) all wave functions are free wave functions, but $S_{F}(z-y)$ is the exact Feynman propagator, which can be expanded in perturbation theory according to the Dyson equation $S_{F}=$ $S_{F 0}+S_{F 0}(e A) S_{F 0}+\ldots$.

Because the Feynman propagator $S_{F}(x-z)$ has two time orderings (see Sect. 13 of spring semester), the interaction terms in Eq.(6.8) can be graphically expressed as follows (up to second order perturbation theory):

Here time is running from bottom to top, and the dashed lines represent the (instantaneous) interactions of the electron with the external field (for example, the Coulomb potential of a nucleus).

Example: Scattering by a Coulomb potential (produced by a heavy nucleus).

$$
\begin{align*}
\psi_{i}(x) & =\sqrt{\frac{m}{E_{p}}} \frac{1}{\sqrt{V}} u(\vec{p}, s) e^{-i\left(E_{p} y^{0}-\vec{p} \cdot \vec{y}\right)} \\
\psi_{f}(x) & =\sqrt{\frac{m}{E_{p^{\prime}}}} \frac{1}{\sqrt{V}} u\left(\vec{p}^{\prime}, s^{\prime}\right) e^{-i\left(E_{p^{\prime}} y^{0}-\vec{p}^{\prime} \cdot \vec{y}\right)} \\
A^{\mu}(y) & =\left(A^{0}=-\frac{Z e}{4 \pi|\vec{y}|}, \vec{A}=0\right) \tag{6.9}
\end{align*}
$$

Then the S-matrix (6.8), for $f \neq i$, to order e^{2} becomes:

$$
S_{f i}=i Z \frac{e^{2}}{4 \pi} \frac{1}{V} \sqrt{\frac{m^{2}}{E_{p} E_{p^{\prime}}}}\left(\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)\right) \int \frac{\mathrm{d}^{4} y}{|\vec{y}|} e^{i\left(E_{p^{\prime}}-E_{p}\right) y^{0}} e^{-i\left(\vec{p}^{\prime}-\vec{p}\right) \cdot \vec{y}}
$$

Use here the relations

$$
\begin{align*}
\int_{-\infty}^{+\infty} \mathrm{d} y^{0} e^{i\left(E_{p^{\prime}}-E_{p}\right) y^{0}} & =(2 \pi) \delta\left(E_{p^{\prime}}-E_{p}\right) \tag{6.10}\\
\int \frac{\mathrm{d}^{3} y}{|\vec{y}|} e^{-i \vec{q} \cdot \vec{y}} & =\frac{4 \pi}{\vec{q}^{2}} \quad\left(\vec{q}=\vec{p}^{\prime}-\vec{p}\right)
\end{align*}
$$

Then we obtain

$$
\begin{equation*}
S_{f i}=\frac{i Z e^{2}}{V} \frac{m}{E_{p}} \frac{\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)}{\vec{q}^{2}}(2 \pi) \delta\left(E_{p^{\prime}}-E_{p}\right) \tag{6.11}
\end{equation*}
$$

The probability for electron scattering $i=(\vec{p}, s) \rightarrow f=\left(\vec{p}^{\prime}, s^{\prime}\right)$ is then given by $\left|S_{f i}\right|^{2}$. However, in a finite volume V, a state with sharp value of \vec{p} cannot be observed (because of the uncertainty relation). To calculate the probability for electron scattering, we need the number of final states in the volume V and in the momentum interval $\mathrm{d}^{3} p^{\prime}$. This number is called the phase space factor.

Consider first only 1 space dimension:
In classical physics, each point of the phase space (x, p) corresponds to one state. In quantum mechanics, because of the uncertainty principle $\mathrm{d} x \mathrm{~d} p>h=2 \pi \hbar$, each cell of size h corresponds to one state:

In 3 space dimensions:
The number of states, with spin up or spin down, in the volume V and in the momentum interval $\mathrm{d}^{3} p^{\prime}$, is equal to the number of cells in the phase space volume $\left(V \cdot \mathrm{~d}^{3} p^{\prime}\right)$, and is given by

$$
\begin{equation*}
\frac{V \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{3}} \tag{6.12}
\end{equation*}
$$

Therefore, the probability for scattering into any of these $\frac{V \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{3}}$ states is given by

$$
\begin{equation*}
\left|S_{f i}\right|^{2} \frac{V \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{3}} \tag{6.13}
\end{equation*}
$$

Definition of differential cross section:

$$
\begin{align*}
\mathrm{d}^{3} \sigma & \equiv \frac{\text { number of particles scattered (per unit time) into } \mathrm{d}^{3} p^{\prime}}{\text { number of incoming particles (per, time, per area) }} \\
& =N_{\text {in }}\left(\left|S_{f i}\right|^{2} \cdot \frac{V \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{3}} \frac{1}{\Delta T}\right) /\left|\vec{j}_{\text {in }}\right| \tag{6.14}
\end{align*}
$$

Here

- ΔT is the observation time \simeq time it takes the electron to go from the accelerator to the detector. For a distance $L \simeq 1 \mathrm{~m}$, we have $\Delta T>10^{-8} \mathrm{~s}$;
- $N_{\text {in }}$ is the number is incoming particles per unit time;
- $\vec{j}_{\text {in }}$ is the incoming flux of particles:

$$
\begin{aligned}
\vec{j}_{\mathrm{in}} & =\left(\bar{\psi}_{i}(x) \vec{\gamma} \psi_{i}(x)\right) \cdot N_{\mathrm{in}}=\frac{m}{E_{p}} \frac{1}{V}(\bar{u}(\vec{p}, s) \vec{\gamma} u(\vec{p}, s)) \cdot N_{\mathrm{in}} \\
& =\frac{\vec{p}}{E_{p}} \frac{N_{\mathrm{in}}}{V}=\vec{v} \frac{N_{\mathrm{in}}}{V}
\end{aligned}
$$

where \vec{v} is the velocity of the incoming electrons.
Then we get the differential cross section as follows:

$$
\begin{align*}
\mathrm{d}^{3} \sigma & =\frac{V}{v}\left|S_{f i}\right|^{2} \cdot \frac{V \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{3}} \frac{1}{\Delta T} \\
& =\frac{\mathrm{d}^{3} p^{\prime}}{v(2 \pi)^{3}} \frac{1}{\Delta T}\left(Z e^{2}\right)^{2}\left(\frac{m}{E_{p}}\right)^{2} \frac{\left|\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)\right|^{2}}{\vec{q}^{4}}\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)^{2} \tag{6.15}
\end{align*}
$$

What is the meaning of the square of the delta function?
If the observation time is $\Delta T \simeq 10^{-8} \mathrm{~s}$, then the integration over time (see Eq.(1.10)) should be replaced by $\int_{-\Delta T / 2}^{+\Delta T / 2} \mathrm{~d} y^{0}$, and therefore

$$
\begin{align*}
& \left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)^{2} \longrightarrow\left(\int_{-\Delta T / 2}^{+\Delta T / 2} \mathrm{~d} t e^{i\left(E_{p^{\prime}}-E_{p}\right) t}\right)^{2} \\
& \quad=4 \frac{\sin ^{2} \frac{E_{p^{\prime}}-E_{p}}{2} \Delta T}{\left(E_{p^{\prime}}-E_{p}\right)^{2}}=(2 \pi \Delta T)\left(\frac{\sin ^{2} \frac{\Delta E}{2} \Delta T}{\pi \frac{(\Delta E)^{2}}{2} \Delta T}\right) \tag{6.16}
\end{align*}
$$

Here $\Delta E \equiv E_{p^{\prime}}-E_{p}$. Consider now the following expression as a function of ΔE :

$$
\frac{\sin ^{2} \frac{\Delta E}{2} \Delta T}{\pi \frac{(\Delta E)^{2}}{2} \Delta T}=\frac{\Delta T}{2 \pi}\left(\frac{\sin \frac{\Delta E}{2} \Delta T}{\frac{\Delta E}{2} \Delta T}\right)^{2}
$$

(In the figure, $t \equiv \Delta T$, and $\Omega \equiv \Delta E$.) Because $\Delta T \simeq 10^{-8} \mathrm{~s}$ is a "macroscopic time", we have ${ }^{1}$ $\frac{2 \pi \hbar}{\Delta T} \simeq 2 \pi \times 10^{-7} \mathrm{eV}$, which is very small compared to a typical resolution energy of $\simeq 1 \mathrm{eV}$. Therefore, $\frac{2 \pi \hbar}{\Delta T}$ is practically zero, which means that the macroscopic time ΔT can be replaced by $\Delta T \rightarrow \infty$. Then we can use the relation

$$
\frac{\sin ^{2} \frac{\Delta E}{2} \Delta T}{\pi \frac{(\Delta E)^{2}}{2} \Delta T} \xrightarrow{\Delta T \rightarrow \infty} \delta(\Delta E)
$$

Therefore, finally, we get for (6.16),

$$
\begin{equation*}
\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)^{2} \xrightarrow{\Delta T \rightarrow \infty}(2 \pi \Delta T) \delta\left(E_{p^{\prime}}-E_{p}\right) \tag{6.17}
\end{equation*}
$$

Note: A shorthand "derivation" of this result is simply as follows:

$$
\begin{aligned}
\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)^{2} & =\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right) \\
& =\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right)(2 \pi \delta(0)) \equiv\left(2 \pi \delta\left(E_{p^{\prime}}-E_{p}\right)\right) \Delta T
\end{aligned}
$$

Physically, it means that if we observe the particle for a macroscopic time ΔT, there is no uncertainty of the energy. (Note that the static Coulomb potential cannot transfer energy, so we must get energy conservation: $E_{p}=E_{p^{\prime}}$.)
Using the result (6.17) in the differential cross section (6.15), and $\mathrm{d}^{3} p^{\prime}=p^{\prime 2} \mathrm{~d} p^{\prime} \mathrm{d} \Omega^{\prime}$ with $p=p^{\prime}$ from the energy conserving delta function, we get (with $\alpha \equiv e^{2} /(4 \pi) \simeq 1 / 137$)

$$
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} p^{\prime} \mathrm{d} \Omega^{\prime}}=\frac{4 Z^{2} \alpha^{2} p^{2}}{v}\left(\frac{m}{E_{p}}\right)^{2} \delta\left(E_{p^{\prime}}-E_{p}\right) \frac{\left|\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)\right|^{2}}{\vec{q}^{4}}
$$

[^0]We can integrate this over p^{\prime}, using $\delta\left(E_{p^{\prime}}-E_{p}\right)=\frac{1}{v} \delta\left(p^{\prime}-p\right)$ to get the usual "differential cross section":

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{\prime}} \equiv \frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega^{\prime}}=\frac{4 Z^{2} \alpha^{2} m^{2}}{\vec{q}^{4}}\left|\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)\right|^{2} \tag{6.18}
\end{equation*}
$$

Here the momentum transfer is given in terms of the scattering angle θ by

$$
\begin{equation*}
\vec{q}^{2}=\left(\vec{p}^{\prime}-\vec{p}\right)^{2}=2 p^{2}(1-\cos \theta)=4 p^{2} \sin ^{2} \frac{\theta}{2} \tag{6.19}
\end{equation*}
$$

In the nonrelativistic limit we have $\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s) \simeq 1$, and Eq.(6.18) becomes the Rutherford cross section.
$\underline{\text { Relativistic effects from electron spin, Mott cross section: }}$
Here we calculate the "unpolarized cross section":

- The initial electrons have equal probability for spin up $(s=1 / 2)$ and spin down $(s=-1 / 2)$
\Rightarrow average $\frac{1}{2} \sum_{s}$;
- Both spin directions of the final electron are observed, i.e., the detector does not differentiate between the spin directions

$$
\Rightarrow \operatorname{sum} \sum_{s}
$$

Then the unpolarized differential cross section becomes

$$
\begin{equation*}
\frac{\mathrm{d} \bar{\sigma}}{\mathrm{~d} \Omega^{\prime}}=\frac{2 Z^{2} \alpha^{2} m^{2}}{\vec{q}^{4}} \sum_{s s^{\prime}}\left|\bar{u}\left(\vec{p}^{\prime}, s^{\prime}\right) \gamma^{0} u(\vec{p}, s)\right|^{2} \tag{6.20}
\end{equation*}
$$

We now use the following identity for the square of spinor matrix elements: If Γ is a Dirac γ-matrix, then

$$
\begin{aligned}
|\bar{u}(f) \Gamma u(i)|^{2} & =(\bar{u}(f) \Gamma u(i))\left(u^{t}(f) \gamma^{0} \Gamma^{*} u^{*}(i)\right)=(\bar{u}(f) \Gamma u(i))\left(u^{\dagger}(i) \Gamma^{\dagger} \gamma^{0} u(f)\right) \\
& =(\bar{u}(f) \Gamma u(i))\left(\bar{u}(i)\left(\gamma^{0} \Gamma^{\dagger} \gamma^{0}\right) u(f)\right)
\end{aligned}
$$

If we define $\bar{\Gamma} \equiv \gamma^{0} \Gamma^{\dagger} \gamma^{0}$, and indicate the Dirac indices $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ explicitly, we obtain

$$
\begin{aligned}
\sum_{s s^{\prime}}|\bar{u}(f) \Gamma u(i)|^{2} & =\sum_{s s^{\prime}} \bar{u}_{\alpha}\left(\vec{p}^{\prime}, s^{\prime}\right) \Gamma_{\alpha \beta} u_{\beta}(\vec{p}, s) \bar{u}_{\alpha^{\prime}}(\vec{p}, s) \bar{\Gamma}_{\alpha^{\prime} \beta^{\prime}} u_{\beta^{\prime}}\left(\vec{p}^{\prime}, s^{\prime}\right) \\
& =\operatorname{Tr}\left(\Lambda_{+}\left(\vec{p}^{\prime}\right) \Gamma \Lambda_{+}(\vec{p}) \bar{\Gamma}\right)
\end{aligned}
$$

where Tr means the trace over the Dirac indices, and the positive energy projection operator is given by (see Sect. 9 of spring semester, Eqs.(9.1) and (9.5))

$$
\Lambda_{+}(\vec{p})=\frac{\not p+m}{2 m} \quad\left(\text { here } \not p=E_{p} \gamma^{0}-\vec{p} \cdot \vec{\gamma}\right)
$$

In our case (Eq.(6.20)) we have $\Gamma=\bar{\Gamma}=\gamma^{0}$, and the unpolarized differential cross section becomes

$$
\begin{equation*}
\frac{\mathrm{d} \bar{\sigma}}{\mathrm{~d} \Omega}=\frac{Z^{2} \alpha^{2}}{2 \vec{q}^{4}} \operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{0}(\not p+m) \gamma^{0}\right] \tag{6.21}
\end{equation*}
$$

There are many theorems about traces of products of γ-matrices $\Gamma=\left(\gamma^{0}, \gamma^{i}\right)$. Here we just need the following two theorems:

- The trace of a product of an odd number of Γ - matrices is zero:

$$
\begin{equation*}
\operatorname{Tr}\left(\Gamma_{1} \ldots \Gamma_{n}\right)=0 \quad \text { if } n=\text { odd } \tag{6.22}
\end{equation*}
$$

Proof: Using the matrix $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, which satisfies $\gamma_{5}^{2}=1$ and $\left\{\gamma_{5}, \Gamma\right\}=0$, and the property of the trace $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$, we have for $n=$ odd

$$
\begin{aligned}
\operatorname{Tr}\left(\Gamma_{1} \ldots \Gamma_{n}\right) & =\operatorname{Tr}\left(\Gamma_{1} \ldots \Gamma_{n} \gamma_{5} \gamma_{5}\right) \\
& =\operatorname{Tr}\left(\gamma_{5} \Gamma_{1} \ldots \Gamma_{n} \gamma_{5}\right)=(-1)^{n} \operatorname{Tr}\left(\Gamma_{1} \ldots \Gamma_{n}\right)=-\operatorname{Tr}\left(\Gamma_{1} \ldots \Gamma_{n}\right)=0
\end{aligned}
$$

- For the product of two and four γ-matrices we have the following formulas:

$$
\begin{align*}
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right) & =4 g^{\mu \nu} \tag{6.23}\\
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma}\right) & =4\left(g^{\mu \nu} g^{\lambda \sigma}-g^{\mu \lambda} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \lambda}\right) \tag{6.24}
\end{align*}
$$

Proof of (6.23): Using $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ and the anticommutation relations of γ-matrices, we have

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=\frac{1}{2} \operatorname{Tr}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=g^{\mu \nu} \operatorname{Tr} 1=4 g^{\mu \nu}
$$

Eq.(6.24) can be derived by using similar methods.
Note that the formula (6.23) gives the following result for any 4 -vectors a, b :

$$
\operatorname{Tr}(\not \subset \mid b)=a_{\mu} b_{\nu} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 a_{\mu} b_{\nu} g^{\mu \nu}=4 a \cdot b
$$

In the same way, the formula (6.24) gives the following result for any 4 -vectors a, b, c, d :

$$
\operatorname{Tr}(\phi \phi \phi \phi d)=4(a \cdot b c \cdot d-a \cdot c b \cdot d+a \cdot d b \cdot c)
$$

Now we can continue with the calculation of the unpolarized cross section (6.21): The trace factor becomes

$$
\begin{align*}
& \operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{0}(\not p+m) \gamma^{0}\right]=\operatorname{Tr}\left(m^{2}+\not p^{\prime} \gamma^{0} \not p \gamma^{0}\right) \\
& =4\left(m^{2}+2 E_{p} E_{p^{\prime}}-p \cdot p^{\prime}\right) \tag{6.25}
\end{align*}
$$

Using now (with $E \equiv E_{p}=E_{p^{\prime}}$)

$$
p \cdot p^{\prime}=E^{2}-\vec{p}^{2} \cos \theta=m^{2}+\vec{p}^{2}(1-\cos \theta)=m^{2}+2 \vec{p}^{2} \sin ^{2} \frac{\theta}{2}
$$

we finally get for the trace factor (6.25)

$$
\operatorname{Tr}\left[\left(\not{ }^{\prime}+m\right) \gamma^{0}(\not p+m) \gamma^{0}\right]=8 E^{2}\left(1-\vec{v}^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

Inserting this into the cross section (6.21), and using also the relation (6.19), we finally obtain

$$
\begin{equation*}
\frac{\mathrm{d} \bar{\sigma}}{\mathrm{~d} \Omega}=\frac{Z^{2} \alpha^{2}}{4 p^{2} v^{2} \sin ^{4} \frac{\theta}{2}}\left(1-v^{2} \sin ^{2} \frac{\theta}{2}\right) \tag{6.26}
\end{equation*}
$$

Here we denote the magnitude squared of 3 -vectors by $p^{2} \equiv \vec{p}^{2}$ and $v^{2} \equiv \vec{v}^{2}$. In our natural units, $\alpha=e^{2} /(4 \pi) \simeq 1 / 137$ is the "fine structure constant".

The formula (6.26) is called the Mott cross section, and describes elastic scattering of electrons on a Coulomb potential (for example, produced by a heavy spinless nucleus).

[^0]: ${ }^{1}$ Note that $\hbar \simeq 10^{-15} \mathrm{eV} \cdot \mathrm{s}$.

