
7 Effects of finite size of target

The Mott cross section describes the elastic scattering of electrons on a Coulomb potential, i.e., on

a heavy point nucleus with spin zero (no magnetic field). For a nucleus with finite size, the scalar

potential A0(y) is modified as follows (see Sect.6, Eq.(6.9)):

A0(y) = − Ze

4π|~y|
−→ −Ze

4π

∫
d3y′

ρe(~y
′)

|~y − ~y′|
(7.1)

where (−Ze) > 0 is the charge of the nucleus, and the electric charge density ρe(~y) is normalized to

1: ∫
d3y ρe(~y) = 1 (7.2)

For a point nucleus we have ρe(~y) = δ(3)(~y). Then, in the calculation of the S-matrix, we need the

Fourier transform of A0(y) (see Sect.6, Eq.(6.10)):

A0(q) =

∫
d3y A0(~y) e−i~q·~y =

−Ze
4π

∫
d3y

∫
d3y′

|~y − ~y′|
ρe(~y

′) e−i~q·~y (7.3)

A variable transform (~y, ~y′)→ (~z, ~y′) with ~z = ~y − ~y′ gives

A0(q) =
−Ze
4π

∫
d3z

|~z|
e−i~q·~z

∫
d3y′ ρe(~y

′) e−i~q·~y
′

=
−Ze
~q2

Fe(~q
2) (7.4)

where the electric form factor of the nucleus is defined as

Fe(~q
2) =

∫
d3y ρe(~y) e−i~q·~y (7.5)

The electric form factor is the Fourier transform of the electric charge density. It is normalized as

Fe(~q
2 = 0) = 1.

The cross section is then given by (see Sect.6, Eq.(6.26)):

dσ

dΩ
=

(
dσ

dΩ

)
Mott

|Fe(~q2)|2 (7.6)

where
(

dσ
dΩ

)
Mott

is the “Mott cross section” for a point nucleus, given by Eq.(1.26) of No.12.

One can use the definition (7.5) to calculate the charge form factor for various forms of the charge

density. Here we give some examples 1:

1ρ0 is a constant determined from the normalization (7.2). c and R are parameters determined by a fit to experi-
mental data.
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• Point function: ρe(~x) = δ(3)(~x)⇒ Fe(~q
2) = 1.

• Exponential function: ρe(~x) = ρ0e
−r/c ⇒ Fe(~q

2) = 1
(1+~q2 c2)2

. (“Dipole form factor”)

• Gauss function: ρe(~x) = ρ0 e
−~x2/c2 ⇒ Fe(~q

2) = e−~q
2c2/4.

• Step function: ρe(~x) = ρ0 θ(R− |~x|)⇒ Fe(~q
2) = 3

(qR)3
(sin(qR)− qR cos(qR)).

(Here q ≡ |~q|.)

As an example, we show the cross sections for the incident electron energy E = 500 MeV (=2.53

fm−1). 2 Because this is large compared to the electron rest energy m = 0.51 MeV, we can use

the “ultra-relativistic approximation” E =
√
m2 + p2 ' p. The momentum transfer can then be

expressed as q = 2E sin θ
2
.

The left figure shows the cross section for a point target (Mott cross section), and for a step function

with R = 4 fm. The right figure shows the experimental cross section for a 40Ca target nucleus:

The experimental cross section for 40Ca target is similar to the “step function” case. In general, the

experimental data for a target nucleus with mass number A can be well described by the following

“Fermi distribution”:

ρe(r) =
ρ0

1 + e−(r−R)/a
(7.7)

2Note: In our natural units, we have ~c = 197 MeV · fm ≡ 1⇒ 1 MeV ≡ 1/197 fm−1. The cross sections are given
in units of 1 mb ≡ 1 millibarn = 10−27 cm2.
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The parameters R and a are given for heavy nuclei (mass number A > 40) by:

R = r0A
1/3 (r0 = 1.1 fm), a = 0.54 fm

8 Heavy spin-1/2 target including finite size effects

Here we sketch how the results are modified if the target has spin 1/2. (We will discuss the case of

spin-1/2 targets (nucleons) relativistically in later sections.)

In addition to the scalar potential A0 (see Eq.(7.1)), the target also produces a vector potential:

~A(~x) =
1

4π

∫
d3x′

~j(~x′)

|~x− ~x′|
(8.1)

In our static approximation, the target does not move (no convection current), but it has a magnetic

moment ~m, which gives rise the the current

~j(~x) = −
(
~m× ~∇x

)
ρm(~x) (8.2)

where the magnetic moment density ρm(~x) is normalized by∫
d3x ρm(~x) = 1

Homework: By using partial integrations, show that Eq.(8.2) satisfies the usual definition of the

magnetic moment in electrodynamics:

~m =
1

2

∫
d3x

(
~x×~j(~x)

)
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The S-matrix, including the contribution from the vector potential, becomes (see Sect. 6, Eq.(6.8),

(6.9)):

Sfi = −ie
∫

d4xψf (x)
[
γ0A

0(x)− ~γ · ~A(x)
]
ψi(x)

= −ie 1

V

√
m2

Ep′Ep

∫
d4x ei(Ep′−Ep)x0 e−i~q·~x

[
(u(~p′, s′)γ0u(~p, s))A0(x)− (u(~p′, s′)~γu(~p, s)) · ~A(x)

]
= −ie 1

V

√
m2

Ep′Ep
(2πδ(Ep′ − Ep))

[
(u(~p′, s′)γ0u(~p, s))A0(q)− (u(~p′, s′)~γu(~p, s)) · ~A(q)

]
(8.3)

The Fourier transform of the scalar potential was calculated in (7.4), and a similar calculation gives

for the vector potential

~A(q) =

∫
d3x ~A(~x) e−i~q·~x =

−i
~q2

(~m× ~q) Fm(~q2) (8.4)

where the magnetic form factor is defined as the Fourier transform of the magnetic moment density:

Fm(~q2) =

∫
d3x e−i~q·~x ρm(~x) (8.5)

It is normalized as Fm(~q2 = 0) = 1.

Homework: Use (8.1) and (8.2) to derive (8.4), using partial integrations.

Consider here the case of a nucleon target: Its magnetic moment is related to the spin vector ~S by

~m = µN gs ~S (8.6)

where µN = −Ze/(2M) is the nuclear magneton (Z = 1), gs is the spin g-factor of the nucleon, and

~S is the spin vector. The observed values are gs = 5.58 for a proton, and gs = −3.82 for a neutron

3. The spin vector ~S for the case of electron-nucleon scattering is given by the transition matrix

element of the spin operator ~̂S = ~σ/2 between the Pauli spinors of the nucleon:

~S ≡ φ†(S ′)
~σ

2
φ(S) (8.7)

where S, S ′ = ±1/2 are the spin quantum numbers of the nucleon in the initial and final states.

Then the vector potential (8.4) takes the form

~A(q) =
−Ze
~q2

−igs
2M

(
~S × ~q

)
Fm(~q2)

3Remember that for a “Dirac particle” we have gs = 2.
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p,s

p’,s’

P,S

P’,S’

q

The unpolarized differential cross section becomes (see Sect. 6, Eq.(6.20)):

dσ

dΩ
=
Z2α2m2

~q4

∑
ss′

∑
SS′

|
(
u(~p′, s′)γ0u(~p, s)

)
Fe(~q

2)δSS′ +
igs
2M

(u(~p′, s′)~γu(~p, s)) ·
(
~S × ~q

)
Fm(~q2)|2

(8.8)

One can show that the cross terms between the electric and magnetic contributions are zero. The

summation over electron spins is performed by using traces over Dirac matrices (see Sect.6), and over

nucleon spins by using traces of Pauli matrices. The result (which will be derived in the relativistic

theory in later sections) is as follows:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[(
Fe(~q

2)
)2

+
~q2

16M2
g2
s

(
Fm(~q2)

)2
(

1 + 2 tan2 θ

2

)]
(8.9)

=

(
dσ

dΩ

)
Mott

[(
GE(~q2)

)2
+ b

(
GM(~q2)

)2
(

1 + 2 tan2 θ

2

)]
(8.10)

In Eq.(8.10), we defined b ≡ ~q2/(4M2), and redefined the electric and magnetic form factors as

follows:

GE(~q2) ≡ Fe(~q
2) (GE(~q2 = 0) = 1)

GM(~q2) ≡ gs
2
Fm(~q2) (GM(~q2 = 0) =

gs
2

)

The fully relativistic formula for the cross section, which will be derived in later sections, is given by

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
(GE(Q2))

2
+ b (GM(Q2))

2

1 + b
+ 2b

(
GM(Q2)

)2
tan2 θ

2

]
(8.11)

where Q2 = −q2 = ~q2− q2
0 > 0 is the 4-momentum transfer squared 4, and b = Q2/(4M2). Eq.(8.11)

is called the Rosenbluth formula.

4In electron scattering, the square of the 4-momentum transfer is always negative: q2 < 0. Reason for this: If (k, k′)

are the electron momenta before and after scattering, then q2 = (k−k′)2 = 2
(
m2 − k · k′

)
= 2

(
m2 − EkEk′ + ~k · ~k′

)
,

where we used the on-shell conditions k′2 = k2 = m2. Because q2 is Lorentz invariant, we can use the frame where
~k = 0 (Ek = m), and there evidently q2 < 0. The 4-vector qµ is therefore a “space-like” 4-vector.
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Comparison of the cross section with experiment for incident electron energy E = 188 MeV:

(a) Mott curve means the Mott cross section (replace GE(Q2)→ 1 and GM(Q2)→ 0);

(b) Dirac curve means to replace GE(Q2) → 1 (point charge) and GM(Q2) → 1 (point magnetic

moment with the Dirac value gs = 2);

(c) Point charge, point moment (anomalous) curve means to replace GE(Q2)→ 1 (point charge) and

GM(Q2)→ gs (point magnetic moment, gs = 5.58 for proton and −3.82 for neutron).

The form factors GE(Q2) and GM(Q2) are extracted from the experimental cross section by using

the Rosenbluth plot: For a fixed value of Q2 = 4E2 sin2 θ
2
, plot the cross section (8.11) as a function

of tan2 θ
2
. The experimental data should lie on a straight line.

From the slope and the intercept of the straight line (which is fitted to experimental data), one

obtains GE(Q2) and GM(Q2). 5

5In order to fix Q2 = 4E2 sin2 θ
2 and vary θ, one has to vary also the incident electron energy E.
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Observed form factors of the nucleon:

The nucleon form factors obtained from electron scattering experiments by using the Rosenbluth

plot are shown in the figures below. The electric form factor of proton (Gp
E(Q2)) and the magnetic

form factors of proton and neutron (Gp
M(Q2) and Gn

M(Q2)) are well described by the “dipole form

factor” GD(Q2) = 1
1+Q2/Λ2 with Λ2 = 0.71 GeV2:

Gp
E(Q2) = GD(Q2) , Gp

M(Q2) =
gps
2
GD(Q2) , Gn

M(Q2) =
gns
2
GD(Q2)
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In the nonrelativistic limit, the charge density is given by the Fourier transform of the charge form

factor, and the magnetic moment density is given by the Fourier transform of the magnetic form

factor. Then the charge density of proton, and the magnetic moment densities of proton and neutron

are approximately exponential functions. (See Sect. 8, case “exponential function”.) The charge

density of neutron, obtained from a Fourier transform of Gn
E, is positive in the center (small r), and

negative at the surface (large r). This can be explained by Yukawa theory, because the neutron has

a cloud of virtual pions (see Figure below). Only charged pions contribute to the charge density, and

in the case of a neutron only π− is possible because of charge conservation.

n n nn

π
ο

n np

π
−

+ +
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