
10 Relativistic treatment of electron-proton scattering

Remember: The S-matrix (in lowest order perturbation theory) for the scattering of an electron in

an external electromagnetic field Aµ(x) is given by (see Sect. 6, Eq.(6.8)):

Sfi = −ie
∫

d4x jµfi(x)Aµ(x) (10.1)

where jµfi(x) is the electron “transition current” given by

jµfi(x) = ψf (x)γµψi(x) = ei(p
′−p)x jµfi(x = 0) (10.2)

with

jµfi(x = 0) =

√
m

Ep′

√
m

Ep′

1

V
u(~p′, s′)γµu(~p, s) (10.3)

i=(p,s)

f=(p’,s’)

I=(P,S)

F=(P’,S’)

q

Figure 1: The initial hadron state I denotes a proton, and the final hadron state F denotes a proton
(for elastic scattering, Bjorken x = 1) or a heavier state of hadrons (pπ0, nπ+, . . . ) for inelastic
scattering (Bjorken x < 1).

The vector potential Aµ(x), which is produced by the hadron in the transition I → F , is obtained

from the Maxwell equation

�Aµ(x) = ep J
µ
FI(x) (10.4)

where ep = −e is the proton charge, and � = ∂µ∂
µ is the d’Alembert operator. The solution to

(10.4) is obtained as

Aµ(x) = −ep
∫

d4x′D(x− x′) JµFI(x
′) (10.5)

Here D(x− x′) is the Green function of the d’Alembert operator defined by

�xD(x− x′) = −δ(4)(x− x′) (10.6)
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Using (10.5), the S-matrix (10.1) for electron-proton scattering becomes

Sfi = ieep

∫
d4x

∫
d4x′ jµfi(x)D(x− x′) Jµ,FI(x′) (10.7)

Because the proton initial state is described by a plane wave e−iP ·x
′

(independent of its internal

structure), and the final hadron state (whatever it is) is also described by a plane wave eiP
′·x′ , the x′

- dependence of the hadron transition current is of the form

JµFI(x
′) = ei(P

′−P )·x′ JµFI(x
′ = 0) (10.8)

Then we can perform the integrations over x and x′ in (10.7) by∫
d4x

∫
d4x′ ei(p

′−p)·x ei(P
′−P )·x′ D(x− x′) (x,x′)→(z=x−x′,x)

=

∫
d4x

∫
d4z ei(p

′−p+P ′−P )·x e−i(P
′−P )·zD(z)

= (2π)4 δ(4) (P ′ + p′ − P − p) D(q) (10.9)

where q = p− p′ is the momentum transfer (see Fig.1), and the Fourier transformed Green function

D(q) is obtained from (10.6) as

D(q) =
1

q2
(10.10)

Then the S-matrix (10.7) becomes

Sfi =
ieep
q2

(2π)4 δ(4) (P ′ + p′ − P − p) jµfi Jµ,FI (10.11)

where the transition currents are now defined at x = 0.

Remember from Sect. 6: In order to calculate the differential cross section from (10.11), we have to

do the following:

• Calculate |Sfi|2, by using the following rule:[
(2π)4 δ(4) (P ′ + p′ − P − p)

]2 ≡ (2π)4 δ(4) (P ′ + p′ − P − p) · (2π)4 δ(4) (k = 0)

≡ (2π)4 δ(4) (P ′ + p′ − P − p) V∆T

where V is the volume of the system, and ∆T is the observation time.

• Divide by the flux of incident particles. If we consider the laboratory frame (proton target at

rest), this is the flux of incoming electrons (see Sect. 6):

|~jin| = |~v|
Nin

V

where ~v is the velocity of the incoming electrons, and Nin is the number of incoming electrons.

2



• Multiply a factor

Nin

∆T

V d3p′

(2π)3
V d3P ′

(2π)3

After these steps, we get for the differential cross section:

dσ =
e4

q4
(2π)4 δ(4) (P ′ + p′ − P − p) 1

v

d3p′

(2π)3
d3P ′

(2π)3
|jµfi Jµ,FI |

2 (10.12)

To obtain this result, we have taken out the factors 1
V

, which are contained in the transition currents

(see (10.3) for the electron):

jµfi →
1

V
jµfi , JµFI →

1

V
JµFI

where the transition currents jµfi and JµFI now have no factors 1/V .

We will always assume that the spin of the electron in the final state (s′) is not observed, and that

the momentum and spins of the final hadrons (~P ′ and S ′, where S ′ symbolically denotes the final

spin of the hadrons) are also not observed. So, only the momentum of the electron in the final state

(~p′) is observed by a detector. In this case, we have to sum over s′ and S ′, and integrate over ~P ′ in

Eq.(10.12). The factor |jµfi Jµ,FI |2 in (10.12) can be expressed as follows:

|jµfi Jµ,FI |
2 =

(
jµfi j

ν∗
fi

)
(JµFI J

ν∗
FI) (10.13)
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We now define the leptonic tensor `µν and the hadronic tensor W µν by the following relations 1:

`µν ≡ 2m2
∑
s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

(10.15)

W µν ≡ EP

∫
d3P ′ δ(4) (P ′ + p′ − P − p)

∑
S′

JµFI J
ν∗
FI (10.16)

Using also d3p′ = p
′2dp′ dΩ′ = p

′
Ep′ dEp′ dΩ′ we obtain the following important result:

dσ

dEp′ dΩ′
=

e4

8π2

p′

p

1

EP q4
`µνW

µν (10.17)

Remember that q2 = q20 − ~q2 is the square of the 4-momentum transfer in the scattering process,

and in the laboratory system the initial proton 4-momentum is P µ =
(
EP = M,~0

)
. Therefore the

Bjorken variable x =
−q2

2P · q
=

2EpEp′ sin2 θ

(Ep − Ep′)M
(see Sect. 9) can be measured by observing only the

electron in the final state, i.e., the final electron energy (Ep′) and the electron scattering angle (θ).

In the following, we will consider the following 2 processes:

• Elastic scattering: The final state (F ) is a proton (x = 1).

• Inelastic inclusive scattering: The final state is not a proton (x < 1), but is not observed by a

detector (i.e., only the final electron is observed, and only events with x < 1 are counted). In

this case, we have to sum over all possible final hadronic states F .

1The hadronic tensor (10.16) is defined in a general frame (not only the laboratory frame). It is often written in
the form

Wµν =
2Ep
2π

∫
d3P ′

(2π)3

∑
S′

(2π)4δ(4) (P ′ + p′ − P − p) JµFI J
ν∗
FI ≡

2EP
2π

∑̂
F

(2π)4δ(4) (P ′ + p′ − P − p) JµFI J
ν∗
FI

≡ 2EP
2π

∑̂
F

(2π)4δ(4) (P ′ + p′ − P − p) 〈F |Ĵµ|I〉 〈F |Ĵν |I〉∗ (10.14)

where the sum over the final proton states is defined as
∑̂
F ≡

∫
d3P ′

(2π)3

∑
S′ , and Ĵµ is the current field operator. The

factor 2Ep in the above expression of Wµν reflects our non-covariant normalization of state vectors used so far in this
course. The normalization and completeness relations in this convention are

〈~p′|~p〉 = (2π)3δ(3)(~p′ − ~p)⇔ 〈~p|~p〉 = V∫
d3p

(2π)3
|~p〉 〈~p| = 1

In many texts, covariant normalization (c) is used, with |~p〉c ≡
√

2Ep|~p〉. Therefore our formulas for matrix elements
〈~p| . . . |~p〉 have a factor of 2Ep, which does not appear in covariant normalization. Note that in our non-covariant
normalization, the matrix elements JµFI are dimensionless.

4



(1) Elastic scattering (x = 1):

What is the form of the transition current JµFI ? If the proton were a point particle, it must be of

the same form as for the electron, i.e., JµFI =
√

M
EP ′

√
M
EP

u(~P ′, S ′) γµ u(~P , S). The effects of proton

structure can be described by using a modified vertex:

γµ −→ Γµ(P ′, P ) (10.18)

This vertex must contain the electric and magnetic form factors, and will be specified later. So, we

write for the proton transition current

JµFI(P
′, P ) =

√
M

EP ′

√
M

EP
u(~P ′, S ′) Γµ(P ′, P )u(~P , S) (10.19)

Consider now the hadronic tensor (10.16):

W µν = 2M2

∫
d3P ′

2EP ′
δ(4) (P ′ + p′ − P − p)

∑
S′

(
u(~P ′, S ′) Γµ(P ′, P )u(~P , S)

)
×

(
u(~P ′, S ′) Γν(P ′, P )u(~P , S)

)∗
(10.20)

We can rewrite this as a 4-dimensional momentum integral by using the identity 2∫
d3P ′

2EP ′
=

∫
d4P ′ δ

(
P

′2 −M2
)
θ(P ′0)

Then the hadronic tensor (10.25) becomes

W µν = 2M2 θ(P0 + p0 − p′0) δ
[
(P + p− p′)2 −M2

]
×

∑
S′

(
u(~P ′, S ′) Γµ(P ′, P )u(~P , S)

) (
u(~P ′, S ′) Γν(P ′, P )u(~P , S)

)∗
where P ′ = P + p− p′.

In order to calculate the usual differential cross section

dσ

d Ω′
=

∫ ∞
m

dσ

dEp′ dΩ′
dEp′

from Eq.(10.17), we also have to integrate over the final electron energy Ep′ . This can be done by

using the following relation (in the laboratory frame):∫ ∞
m

dEp′ θ(M + Ep − Ep′) δ
[
(P + p− p′)2 −M2

]
F (Ep′) =

1

2M

1

1 + 2Ep

M
sin2 θ

2

F (Ep′ = E ′)

(10.21)

2This is an identity, because on the r.h.s. the integration over P ′0 gives:
∫∞
−∞ dP ′0 δ

(
P

′2 −M2
)
θ(P ′0) =

1
2EP ′

∫∞
−∞ dP ′0δ(P

′
0 − EP ′) = 1

2EP ′
.
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where F (Ep′) is any function of Ep′ , and the final electron energy E ′ is given by the initial electron

energy (E = Ep) and the scattering angle by (see also Sect. 9, Eq.(9.8)):

E ′ =
E

1 + 2E
M

sin2 θ
2

(10.22)

Home work: Derive Eq.(10.21) by using the following identity in the laboratory frame:

(P + p− p′)2 −M2 = 2M(Ep − Ep′)− 4EpEp′ sin2 θ

2

(Remember that we always neglect the electron mass: Ep ' |~p| and Ep′ ' |~p′|.)

Then we get the following relation for the differential unpolarized cross section (with α = e2/(4π)) 3:

dσ

dΩ′
=
α2

4

E ′

E

1

M2 q4
1

1 + 2E
M

sin2 θ
2

∑
sS

`µν w
µν (10.23)

where the leptonic and hadronic tensors (for the elastic case) are given by

`µν = 2m2
∑
s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

(10.24)

wµν = 2M2
∑
S′

(
u(~P ′, S ′)Γµu(~P , S)

) (
u(~P ′, S ′)Γνu(~P , S)

)∗
(10.25)

What is the form of the effective vertex Γµ? Remember: For a point particle (electron) we have

Γµ = γµ. What is the difference between electron and proton (besides opposite charge)?

• Spin g-factor (magnetic moment): For electron gs = 2, but for proton gs = 5.58.

• Proton has an extended charge distribution. Its Fourier transform is the electric form factor 4

GE(Q2).

• Proton has an extended magnetic moment distribution. Its Fourier transform is the magnetic

form factor GM(Q2).

Note: In Sect. 6 we used the notations Fe and Fm for the electric and magnetic form factors, but from now

we use GE and GM .

3The cross section for unpolarized scattering is obtained from (10.17) by an average over initial spins and sum over

final spins: 1
4

∑
sS

4The form factors must be Lorentz invariant, and therefore depend on the 4-momentum transfer squared: GE(Q2)
and GM (Q2), where Q2 = −q2 = ~q2 − q20 > 0.
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To get some hint about the form of the effective vertex Γµ, we first proof the following identity for

the electron transition current (Gordon identity):

jµfi =

√
m

Ek

√
m

Ek′
u(~k′, s′)γµ u(~k, s) =

√
m

Ek

√
m

Ek′
u(~k′, s′)

[
(k′ + k)µ

2M
+ i

σµνqν
2m

]
u(~k, s)

(10.26)

Here q = k′−k, and the Dirac matrix σµν is defined by the following commutator between γ-matrices:

σµν =
i

2
[γµ, γν ] (10.27)

Proof of (10.26): Use the following identity for any 4-vectors aµ and bµ:

6a 6b = aµ bν
1

2
[(γµγν + γνγµ) + (γµγν − γνγµ)]

= aµb
µ − iσµν aµbν (10.28)

By using the Dirac equation (6k −m)u(~k, s) = u(~k′, s′) (6k′ −m) = 0, we then have for any 4-vector

aµ

0 = u(~k′, s′) [(6k′ −m) 6a+ 6a (6k −m)]u(~k, s)

= u(~k′, s′)
[
k′ · a− iσµνk′µaν + k · a− iσµνaµkν − 2m6a

]
u(~k, s)

= 2mu(~k′, s′)

[
(k′ + k)µ

2m
aµ + i

σµνaµqν
2m

− γµaµ
]
u(~k, s)

Because aµ is arbitrary, the Gordon formula (10.26) follows.

What is the physical meaning of the 2 terms on the r.h.s. of (10.26)? Consider first the nonrelativistic

limit, where the Dirac spinor is given by u(~k, s) =
(
χ(s), ~σ·

~k
2m
χ(s)

)
with χ(s) the 2-component Pauli

spinor. Then we get from (10.26) in the nonrelativistic limit (lowest order in 1/m)

u(~k′, s′)γ0u(~k, s) ' χ†(s′)χ(s) = δs′s (10.29)

u(~k′, s′)~γu(~k, s) ' χ†(s′)

[
(~k + ~k′)

2m
+ i

~σ × ~q
2m

]
χ(s) (10.30)

Here we used the relation σij = εijkΣk, where ~Σ is the relativistic spin matrix ~Σ =

(
~σ 0
0 ~σ

)
.

We see that (10.29) is the (transition) charge density for a point particle in momentum space, the

first term of Eq.(10.30) is the convection current density, and the second term of (10.30) is the spin

current density in momentum space for a point particle with gs = 2: The latter can be written in
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the form ~jspin = i (~µ× ~q) where the magnetic moment is given by (see Sect. 11 of spring semester,

Eq.(11.10)): ~µ = 1
2m

(
χ†(s′)~σχ(s)

)
gs
2

with gs = 2.

Returning to the relativistic expression (10.26), we can roughly say that the first term on the r.h.s.

describes the convection current, and the second term describes the spin current. For a point particle,

these two terms must go just in the combination of Eq.(10.26), but for the proton (which has a size,

and a different spin g-factor), these two terms will go in some other combination, involving the electric

and magnetic form factors. To get this combination for the proton, let us fist multiply the two terms

on the r.h.s. of (10.26) by independent form factors, which we call 5 F1(Q
2) and (F1(Q

2) + F2(Q
2)):

JµFI =

√
M

EP

√
M

EP ′
u(~P ′, S ′) Γµ(P ′, P )u(~P , S)

=

√
M

EP

√
M

EP ′
u(~P ′, S ′)

[
(P ′ + P )µ

2M
F1(Q

2) + i
σµνqν
2M

(
F1(Q

2) + F2(Q
2)
)]
u(~P , S)

(10.31)

where Q2 = −q2 = ~q2 − q20. How are these form factors F1 and F2 related to the electric and

magnetic form factors defined in Sects. 7 and 8 for a static proton? From the previous Eqs.(7.5)

and (8.5), we see that the electric and magnetic form factors were defined as ordinary 3-dimensional

Fourier transforms of the charge and magnetic moment densities, which is possible if the form factors

are functions of only the 3-momentum transfer (~q2), not the 4-momentum transfer (Q2 = ~q2 − q20).

Therefore, just for the present purpose of physical interpretation, we consider the transition current

(10.31) in a special Lorentz frame where q0 = 0. This frame is called the Breit frame, which is defined

as follows: The incoming momentum is ~P = −~q/2, and the outgoing momentum is ~P ′ = ~P +~q = ~q/2.

Because in this frame ~P + ~P ′ = 0, and EP = EP ′ = Eq/2, the current (10.31) takes the following very

simple form:

J0
FI(Breit) =

M

Eq/2

(
F1(Q

2)− Q2

4M2
F2(Q

2)

)
δS′,S (10.32)

~JFI(Breit) =
M

Eq/2

[
χ†(S ′) i

(~σ × ~q)
2M

χ(S)

] (
F1(Q

2) + F2(Q
2)
)

(10.33)

where Q2 = ~q2 in the Breit frame.

Home work: Use the explicit form of the Dirac spinors, given in Sect. 4 (Eq.(4.16)), in the Breit

5For the electron (Dirac point-particle) we have F1 = 1 and F2 = 0.
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frame to derive (10.32) and (10.33) from (10.31).

Besides the relativistic correction factor M
Eq/2

, we see that in this frame (i) the time component

(10.32) is equal to the nonrelativistiv form (10.29), multiplied by the form factor combination F1 −

(Q2/4M2)F2, and (ii) the space component (10.33) is equal to the nonrelativistic form of the spin

current 6 in (10.30), multiplied by the form factor combination (F1 + F2). Therefore we can identify

the electric and magnetic form factors as

GE(Q2) = F1(Q
2)− Q2

4M2
F2(Q

2) (10.34)

GM(Q2) = F1(Q
2) + F2(Q

2) (10.35)

To get the correct charge and spin g - factor of the proton, the normalizations are GE(0) = 1,

GM(0) = g
(p)
s

2
with g

(p)
s = 5.58. This corresponds to F1(0) = 1, F2(0) = g

(p)
s

2
− 1 ≡ κ(p), where

κ(p) = 1.79 is called the “anomalous part” of g
(p)
s

2
. For the neutron we have GE(0) = 0, FM(0) = g

(n)
s

2

with g
(n)
s = −3.82. This corresponds to F1(0) = 0, F2(0) = g

(n)
s

2
− 1 ≡ κ(n), where κ(n) = −1.91.

Summary of results for the proton (or neutron) transition current:

• The transition current is given by (10.31), where the form factors F1 and F2 are related to the

electric and magnetic form factors GE and GM by (10.34) and (10.35).

• By using the Gordon formula (10.26), we can rewrite the spinor matrix elements in (10.31) in

the following equivalent forms:

uΓµ u = u(~P ′, S ′)

[
γµF1(Q

2) + i
σµνqν
2M

F2(Q
2)

]
u(~P , S) (10.36)

= u(~P ′, S ′)

[
γµ
(
F1(Q

2) + F2(Q
2)
)
− (P + P ′)µ

2M
F2(Q

2)

]
u(~P , S)

(10.37)

Because of the form given in Eq.(10.36), F1(Q
2) is called the “Dirac form factor”, and F2(Q

2) is

called the “Pauli form factor”. The form of Eq.(10.37) is most convenient for calculations.

Calculation of elastic cross section:

We go back to (10.23) to calculate the relativistic elastic cross section. Using the leptonic tensor

6Note that the convection current is zero in the Breit frame, because ~p+ ~p′ = 0.
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(10.24), and the method to perform spin sums by traces of Dirac matrices (see Sect. 6), we get∑
s

`µν = 2m2
∑
ss′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

=
1

2
Tr [(6p′ +m) γµ (6p+m) γν ]

Using the two theorems about traces of Dirac matrices (see Sect. 6, Eqs.(6.22) - (6.24)), we obtain∑
s

`µν = 2
[
p
′µpν + p

′νpµ − gµν
(
p′ · p−m2

)]
(10.38)

Using the hadronic tensor (10.25), we get∑
S

wµν = 2M2
∑
SS′

(
u(~P ′, S ′)Γµu(~P , S)

)(
u(~P ′, S ′)Γνu(~P , S)

)∗
=

1

2
Tr [(6P ′ +M) Γµ (6P +M) Γν ]

≡ wµν1 + wµν2 (10.39)

Here we split Γµ into two terms as given in Eq.(10.37). The part wµν1 is similar to the electron case

and given by

wµν1 = 2
(
F1(Q

2) + F2(Q
2)
)2 [

P
′µP ν + P

′νP µ − gµν
(
P ′ · P −M2

)]
(10.40)

The part wµν2 contains all the other pieces, and is given by

wµν2 = − 1

4M
F2(Q

2)
(
F1(Q

2) + F2(Q
2)
)

× [(P ′ + P )µ Tr [(6P ′ +M) (6P +M) γν ] + (P ′ + P )ν Tr [(6P ′ +M) γµ (6P +M)]]

+
1

8M2

(
F2(Q

2)
)2

(P ′ + P )µ(P ′ + P )ν Tr [(6P ′ +M) (6P +M)]

= (P ′ + P )µ(P ′ + P )ν
[
−2F2(Q

2)
(
F1(Q

2) + F2(Q
2)
)

+ (F2(Q
2))2

P ′ · P +M2

2M2

]
(10.41)

Finally, one has to calculate the contraction
∑

sS `µνw
µν by using (10.38) for the electron part, and the

sum of (10.40) and (10.41) for the proton part. Inserting the result into (10.23) gives the Rosenbluth

formula of Sect. 8, Eq.(8.11):

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
(GE(Q2))

2
+ b (GM(Q2))

2

1 + b
+ 2b

(
GM(Q2)

)2
tan2 θ

2

]
(10.42)
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where Q2 = −q2 = ~q2 − q20 > 0 is the 4-momentum transfer squared, and b = Q2/(4M2).

Home work (a bit long . . .): Calculate the contraction
∑

sS `µνw
µν , and insert it into (10.23) to

derive (10.42).

The comparison of Eq.(10.42) with experimental data gives the experimentally measured electric and

magnetic form factors, as has been discussed already in Sect. 8.
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