
11 Inelastic inclusive electron-proton scattering

Here we consider inelastic inclusive scattering, where the Bjorken variable x = −q2/(2P · q) < 1, and

the final hadronic state is not observed in the experiment⇒ This means a sum over all possible final

hadronic states 1 (F = N + π, N + 2π,Σ +K, . . . ).

i=(p,s)

f=(p’,s’)

I=(P,S)

q=P -P

electron proton

hadrons (F)

Σ
F

2
PF
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11.1 Cross section and hadronic tensor

The differential cross section for this case is obtained from Sect. 10, Eq.(10.17):

dσ

dEp′ dΩ′
=

e4

8π2

p′

p

1

EP q4
`µνW

µν (11.1)

Here the leptonic and hadronic tensors are defined by (see Eqs.(10.15) and (10.16)):

`µν = 2m2
∑
s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

(11.2)

W µν = EP
∑
F

∫
d3PF δ

(4) (PF − P − q) JµFI J
ν∗
FI (11.3)

The difference to the previous elastic case (Eq.(10.16)) is that, in the Hadronic tensor (11.3), we now

have to sum over all possible hadronic states (F ). In order to perform this sum, we first note that

(2π)4 δ(4)(PF − P − q) =

∫
d4z e−i(PF−P−q)·z

and re-introduce the x - dependent hadron transition current as (see Sect. 10, Eq.(10.8))

JµFI(x) = ei(PF−P )·x JµFI(x = 0) (11.4)

1The single proton state (elastic scattering, x = 1) is automatically excluded by the restriction to x < 1.
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Then we can express the hadronic tensor (11.3) as follows:

W µν =
EP
2π

∑
F

∫
d3PF
(2π)3

∫
d4z e−i(PF−P )·z eiq·z JµFI J

ν∗
FI

=
EP
2π

∑
F

∫
d3PF
(2π)3

∫
d4z eiq·z JµFI J

ν∗
FI(z)

≡ EP
2π

∑̂
F

∫
d4z eiq·z JµFI J

ν∗
FI(z) (11.5)

where the sum
∑̂

F includes the integration over the total 3-momentum of the hadrons:

∑̂
F
≡
∑
F

∫
d3PF
(2π)3

The transition current JµFI , by definition, is the transition matrix element of the current operator

(Ĵµ) between the hadronic states F and I:

JµFI = 〈F |Ĵµ|I〉 , Jν∗FI(z) = 〈F |Ĵν(z)|I〉∗ = 〈I|Ĵν(z)|F 〉 (11.6)

[In the last step, we used the hermiticity of the current operator Ĵν : For any operator Ô we have

the identity 〈f |Ô|i〉∗ = 〈f |Ô†|i〉, and if Ô is hermite then Ô† = Ô.]

Then the hadronic tensor (11.5) becomes

W µν =
EP
2π

∫
d4z eiq·z

∑̂
F
〈I|Ĵν(z)|F 〉 〈F |Ĵµ|I〉

=
EP
2π

∫
d4z eiq·z 〈I|Ĵν(z) Ĵµ(0)|I〉 (11.7)

where we used the completeness of hadronic states:∑̂
F
|F 〉 〈F | = 1 (11.8)

We then get the important result: The hadronic tensor for inelastic inclusive scattering is the Fourier

transform of the “current-current correlation function” in the initial proton state |I〉 = |P, S〉:

W µν =
2EP
4π

∫
d4z eiq·z 〈P, S|Ĵν(z) Ĵµ(0)|P, S〉 (11.9)

As explained in Sect. 10, the factor 2EP in this formula reflects our non-covariant normalization of

state vectors, and is absent in covariant normalization.
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11.2 Structure functions

Change of notation: From now, we denote the 4-momentum of the initial proton by pµ and its spin

4-vector by Sµ. The 4-momentum of the initial electron is denoted by kµ and its spin 4-vector by

sµ. The 4-momentum transfer is q = k− k′. The initial and final electron energies are denoted by E

and E ′.

The hadronic tensor (11.9) depends on the 4-vectors pµ, qµ, and Sµ. Current conservation ∂ν Ĵ
ν(z) = 0

leads to the following condition on the hadonic tensor: If we multiply (11.9) by qν (summation over

ν) and perform a partial integration in z, we obtain the condition 2

qνW
µν = qµW

µν = 0 (11.10)

The most general form of the Lorentz tensor W µν , consistent with (11.10) and also time-reversal

invariance, is then as follows:

W µν = W1(x,Q2)

(
−gµν +

qµqν

q2

)
+
W2(x,Q2)

M2

(
pµ − p · q

q2
qµ
) (

pν − p · q
q2

qν
)

(11.11)

+ M iεµνλσ qλ

[
G1(x,Q2)Sσ +

G2(x,Q2)

M2
(p · q Sσ − (S · q) pσ)

]
(11.12)

Here W1, W2, G1, G2 are functions of the Lorentz invariant variables Q2 = −q2 > 0 and x =

Q2/(2p ·q). The are called structure functions. εµνλσ is totally antisymmetric in all 4 Lorentz indices,

with the definition ε0123 = 1. We see that W µν has a symmetric part which is independent of the

proton spin direction, and an antisymmetric part which depends on the spin direction:

W µν = W µν
(S) +W µν

(A) (11.13)

Remember (spring semester, Sect. 7, Eq.(7.7)): The spin 4-vector of the proton has the form

Sµ =

(
~p · ~S
M

, ~S +
~p

M

~p · ~S
Ep +M

)
(11.14)

where the unit vector 3 ~S is the spin direction in the rest frame, which is considered as a generic

(fixed) direction in space. The spin 4-vector satisfies the relations S2 = −1, p · S = 0.

2The second equality in (11.10) can be derived by following the above arguments with slight modifications (shifting
the z-dependence to the current Ĵµ instead of Ĵν).

3Here we use the normalization |~S| = |~s| = 1 for the spin vectors of the proton and the electron in the rest fram,

while in Sect. 7 we normalized them by 1/2. Also, in Sect. 7, we denoted the spin direction in the rest frame by ~S0,

while here we simply write ~S.
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For reasons which will become clear later, it is sometimes convenient to use another set of dimen-

sionless structure functions F1, F2, g1, g2, which are related to the above ones by

F1(x,Q2) = W1(x,Q2) , F2(x,Q2) =
p · q
M2

W2(x,Q2) ,

g1(x,Q2) = (p · q)G1(x,Q2) , g2(x,Q2) =
(p · q)2

M2
G2(x,Q2)

The hadronic tensor is then expressed by these new structure functions as

W µν = F1(x,Q2)

(
−gµν +

qµqν

q2

)
+
F2(x,Q2)

p · q

(
pµ − p · q

q2
qµ
) (

pν − p · q
q2

qν
)

(11.15)

+
M

p · q
iεµνλσ qλ

[
g1(x,Q2)Sσ + g2(x,Q2)

(
Sσ −

(S · q) pσ
p · q

)]
(11.16)

We can use the definition of Bjorken x in these relations to replace p · q = Q2

2x
.

11.3 Leptonic tensor

In order to calculate the cross section (11.1) including the case of polarized electron and proton in

the initial state, we also need the form of the leptonic tensor (11.2) 4. In order to reduce this to a

calculation of Dirac traces, we use the spin projection operator for the electron, see Sect. 9 of spring

semester, p.4 5:

P (s) =
1

2
(1 + γ56s) (11.17)

It satisfies the relation (see Sect. 9)

P (s)u(~k, s′) = δss′ u(~k, s′)

Then the leptonic tensor (11.2), for fixed initial electron spin component s = ±1/2, can be expressed

as

`µν = 2m2
∑
s′s0

(
u(~k′, s′)γµP (s)u(~k, s0)

)(
u(~k′, s′)γνP (s)u(~k, s0)

)∗
=

1

2
Tr [(6k′ +m) γµP (s) (6k +m)P (s)γν ]

4In Sect. 10 (p. 9) we calculated the leptonic tensor for the case of unpolarized scattering, i.e., including the
summation over s. If the initial electron is polarized, we should not sum over s.

5Remember that here we normalize the spin 4-vector to s2 = −1, while in Sect. 9 we used s2 = −1/4.
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Here we used the methods of Sect. 6 to convert spin sums to traces over Dirac matrices. If we use the

relation 6s6k = −6k6s (which follows from k ·s = 0), we see that 6kP (s) = P (s)6k. Using also P 2(s) ≡ P (s)

(because it is a projection operator), we see that

P (s) (6k +m)P (s) = P (s) (6k +m) = (6k +m)P (s)

Then we obtain

`µν =
1

4
Tr [(6k′ +m) γµ (1 + γ56s) (6k +m) γν ] (11.18)

Now we can calculate the trace (Tr) over the Dirac matrices, using the theorems given in Sect. 6,

Eqs. (6.22), (6.23), (6.24), plus two additional theorems about the matrix γ5 ≡ iγ0γ1γ2γ3. For

convenience, we list all 5 theorems here:

Tr (Γ1 . . .Γn) = 0 if n = odd (11.19)

Tr (γµγν) = 4 gµν (11.20)

Tr
(
γµγνγλγσ

)
= 4

(
gµνgλσ − gµλgνσ + gµσgνλ

)
(11.21)

Tr (γ5γ
µγν) = 0 (11.22)

Tr
(
γ5γ

µγνγσγλ
)

= −4iεµνσλ (11.23)

The result for the trace (11.18) is as follows:

`µν = k
′µkν + k

′νkµ − gµν
(
k′ · k −m2

)
− imεµνσλqσsλ (11.24)

Home work: Derive the result (11.24) from (11.18), by using the theorems given in (11.19 - (11.23).

In the following, we will take the limit m→ 0. Then (see Eq.(11.14))

msµ
m→0−→

(
~k · ~s, ~k(~̂k · ~s)

)
= (~̂k · ~s)

(
E,~k

)
= (~̂k · ~s)kµ (11.25)

Most experiments are done for longitudinal electron polarization: ~̂k ·~s = ±1, which is called positive

(or negative) helicity. In this case,

msµ = ±kµ (11.26)

We then split the leptonic tensor (11.24) into a symmetric part (`µνS ) and an antisymmetric part

(`µνA ):

`µν = `µν(S) ± `
µν
(A) (11.27)
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where the upper (lower) sign refers to positive (negative) electron helicity, and (using q = k − k′)

`µν(S) = k
′µkν + k

′νkµ − gµν (k′ · k) (11.28)

`µν(A) = iεµνσλk′σkλ (11.29)

11.4 Calculation of cross section

By using the expressions for the hadronic tensor, Eq.(11.11), (11.12), and the leptonic tensor,

Eq.(11.28), (11.29), we can now calculate the cross section (11.1). In the calculation, we can make

use of

`µνWµν = `µν(S)W(S)µν ± `µν(A)W(A)µν (11.30)

Therefore the cross section (11.1) splits into a spin independent part (“unpolarized part”) and a spin

dependent part (“polarized part”):

dσ±

dE ′ dΩ′
=

dσ

dE ′ dΩ′
± dσA

dE ′ dΩ′
(11.31)

Here ± refers to the helicity of the incoming electron. If the incoming electron is unpolarized, we

must average over the helicities, and the cross section becomes simply dσ
dE′ dΩ′ .

(1) Unpolarized cross section

Here we calculate the contraction `µν(S)W(S)µν of Eq.(11.30). Because of qµW(S)µν = 0 (where q =

k − k′), we can replace k′ → k in the leptonic tensor (11.28) 6 :

`µν(S)W(S)µν =

(
2kµkν +

q2

2
gµν
)
W(S)µν

For the two terms in W(S)µν of Eq.(11.11), we get the following results:(
2kµkν +

q2

2
gµν
)(
−gµν +

qµqν
q2

)
= −q2 (11.32)(

2kµkν +
q2

2
gµν
)(

pµ −
p · q
q2

qµ

) (
pν −

p · q
q2

qν

)
= 2(p · k)(p · k′) +

q2

2
M2 (11.33)

Homework: Verify Eq.(11.32) and (11.33), by using the on mass-shell relations k
′2 = k2 = m2 ' 0 ⇒

k · q = −q2/2.

6As always, we use k
′2 = (k + q)2 = k2 + q2 + 2k · q together with the on-shell conditions k

′2 = k2 = m2.
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In the laboratory frame where pµ = (M,~0), (11.33) simplifies:

2(p · k)(p · k′) +
q2

2
M2 = 2EE ′M2 cos2 θ

2

where we used q2 = −4EE ′ sin2 θ
2

(see Sect.9, Eq.(9.7)). We then finally obtain the unpolarized cross

section as

dσ

dE ′ dΩ′
= α2 4E

′2

MQ4

(
2W1(x,Q2) sin2 θ

2
+W2(x,Q2) cos2 θ

2

)
(11.34)

Here α = e2

4π
= 1

137
is the fine structure constant.

(2) Polarized cross section

In this case we have not only the angle (θ) between ~k and ~k′, but also the angle (α) between ~k

and ~S, and the angle (φ) between ~k′ and ~S. We therefore chose the following coordinate system (in

the laboratory frame):

k

k’

S

θ

φ

α
z

x

(k,k’) plane

(k,S) plane

The vector ~k is in the z-direction, and the vector ~S is in the (x, z) plane. (θ, φ) are the polar and

azimuthal angles of ~k′. Then the 4-vectors kµ, k
′µ, and Sµ take the following form:

kµ = E (1, 0, 0, 1)

k
′µ = E ′ (1, sin θ cosφ, sin θ sinφ, cos θ)

Sµ = (0, sinα, 0, cosα)

By using these 4-vectors, the contraction

`µν(A)W(A)µν =
(
(i)εµνσλk′σkλ

)
W(A)µν
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can be calculated. For the two terms in (11.12), we obtain the following results:

(
εµνσλk′σkλ

) (
εµνδρq

δSρ
)

= Q2 [cosα (E + E ′ cos θ) + sinα cosφE ′ sin θ](
εµνσλk′σkλ

) (
εµνδρq

δ (p · qSρ − S · qpρ)
)

= Q2M
[
−Q2 cosα + 2EE ′ sinα cosφ sin θ

]
Homework: Verify these two relations by using the following identity:

εµνσλ εµνδρ = −2
(
gσδ g

λ
ρ − gσρ gλδ

)
Then we finally obtain the polarized part of the cross section as

dσA

dE ′ dΩ′
= − 2α2E ′

MQ2E

{
MG1(x,Q2) [cosα (E + E ′ cos θ) + sinα cosφE ′ sin θ]

+ G2

[
−Q2 cosα + 2EE ′ sinα cosφ sin θ

]}
(11.35)

If the initial proton is unpolarized, then we must average over the two possible spin directions along

the axis shown in the above figure (i.e., sum the expressions for the angles α and (α+ π) and divide

by 2). Then (11.35) vanishes, and only the unpolarized part in (11.31) remains. If the initial electron

is unpolarized, we have to average over the 2 helicity states (i.e., sum the cross section σ+ and σ− in

(11.31) and divide by 2). Also in this case, only the unpolarized part in (11.31) remains. Therefore, in

order to measure G1 and G2, both the electron and the proton must be polarized. Most experiments

use either longitudinal proton polarization (α = 0, π) or transverse polarization (α = π/2, 3π/2).

Experimental data for the structure functions will be introduced in a later lecture.
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