
12 Relation to Feynman’s parton model

Remember (Sect. 11):

The cross section for inelastic inclusive electron-proton scattering was expressed in Eq.(11.1) of Sect.

11, in terms of the hadronic tensor W µν (defined in Eq.(11.3)). Then W µν was parametrized in terms

of structure functions, see Eqs.(11.11), (11.12) (or (11.15), (11.16)) of Sect. 11, to get more explicit

forms for the cross section.

Here we introduce a model for the structure functions due to Feynman, which is called the parton

model, and compare predictions of this model with experimental data.

(1) What is the form of the hadronic tensor for a point particle?

First, for simplicity, we consider the spin averaged case. Use Eq.(11.3) of Sect. 11 for the spin

averaged case, and insert the current JµFI of a point particle, which has the same form as for the

electron 1: J
µ(point)
FI =

√
M
Ep

√
M
Ep′

u(~p′, s′)γµu(~p, s). We get(
1

2

∑
s

W µν

)
point

=
Ep
2

∫
d3p′ δ(4)(p′ − p− q) M2

EpEp′

∑
s,s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

(12.1)

To perform the integration, use the identity given on p.5 of of Sect. 10:∫
d3p′

2Ep′
=

∫
d4p′ δ

(
p
′2 −M2

)
θ(p′0)

By using the definition of the Bjorken variable x = −q2/(2p · q) we can rewrite the argument of the

delta function as p
′2 −M2 = 2p · q(1− x). Performing then the spin sums (as we did already many

times) by using the method of Dirac traces, Eq.(12.1) becomes(
1

2

∑
s

W µν

)
point

=
M2

2p · q
δ(x− 1)

∑
s,s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

=
1

2 p · q
δ(x− 1)

(
p
′µpν + p

′νpµ − gµν
(
p′ · p−M2

))
=

1

2
δ(x− 1)

(
−gµν +

p
′µpν + p

′νpµ

p · q

)
(12.2)

where we used p′ · p −M2 = p · q in the last step. (Note that the scattering on a point particle

must be elastic, therefore p2 = M2.) Now compare (12.2) with the parametrization in terms of

1Remember from Sect. 11.2 that we denote the momenta of the target particle by p and p′ = p + q, and its mass
by M .
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structure functions, see Eq.(11.15) of Sect. 11:(
1

2

∑
s

W µν

)
point

= F point
1 (x,Q2)

(
−gµν +

qµqν

q2

)
+
F point
2 (x,Q2)

p · q

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)

Using here p · q = −q2/2 (because the scattering on point particle is elastic), and qµ = p
′µ − pµ, this

becomes(
1

2

∑
s

W µν

)
point

= −gµνF point
1 (x,Q2) +

p
′µpν + p

′νpµ

2(p · q)

(
F point
1 (x,Q2) +

1

2
F point
2 (x,Q2)

)

+
p
′µp

′ν + pµpν

2(p · q)

(
−F point

1 (x,Q2) +
1

2
F point
2 (x,Q2)

)
(12.3)

Comparing (12.2) and (12.3), we obtain for the structure functions of a point particle 2:

F point
1 (x,Q2) =

1

2
δ(x− 1) , F point

2 (x,Q2) = δ(x− 1) = 2xF point
1 (x,Q2) (12.4)

Note: The delta-function δ(x − 1) just expresses the condition of elastic scattering on the point

particle. Because a point particle has no structure, the structure functions are independent of Q2.

The same calculation as above can be done for the full hadronic tensor (W µν)point of a point particle

(not spin averaged). Starting again from Eq.(11.3) of Sect. 11, and using the method of the spin

projection operator explained in Sect. 11 to rewrite the spin sum as a Dirac trace, we have

(W µν)point = Ep

∫
d3p′ δ(4)(p′ − p− q) M2

EpEp′

∑
s′

(u(~p′, s′)γµu(~p, s)) (u(~p′, s′)γνu(~p, s))
∗

=
M2

p · q
δ(x− 1)

∑
s′

(u(~p′, s′)γµu(~p, s)) (u(~p, s)γνu(~p′, s′))

=
1

2
δ(x− 1)

(
−gµν +

p
′µpν + p

′νpµ

p · q
+ iM εµνσλ

qσSλ
p · q

)
(12.5)

We compare this with the parametrization in terms of the structure functions F point
1 , F point

2 , gpoint1 ,

gpoint2 , see Eq.(11.15) and (11.16) of Sect.11. The results for F point
1 and F point

2 are given in Eq.(12.4),

and for gpoint1 , gpoint2 we obtain

gpoint1 (x,Q2) =
1

2
δ(x− 1) , gpoint2 (x,Q2) = 0 (12.6)

2The relation F2 = 2xF1 expresses that the “point particle” considered here has spin 1/2.
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(2) Experimental data on the proton structure function F2(x,Q
2) for Q2 > 1.5 GeV2:

We see: For large enoughQ2 (high energy scattering), F2 is almost independent ofQ2, i.e., F2(x,Q
2) '

F2(x). This phenomenon is called the Bjorken scaling.

The data for F1 (not shown here) indicate that also F1 depends only on x for large Q2, and that

there is the following relation between the proton structure functions F1(x) and F2(x):

F2(x) ' 2xF1(x) (12.7)

This looks like the relation (12.4) for a point particle, although we know that the proton is not a

point particle!

We will show in later lectures that Bjorken scaling and the relation (12.7) can be explained

naturally in the Bjorken limit: The Bjorken limit (B.L.) is defined by

Q2 →∞ , p · q →∞ , x =
Q2

2(p · q)
fixed (12.8)

As we will see later,the B.L. is only a “theoretical tool” to derive Feynman’s parton model, which

gives simple expressions and physical interpretations of structure functions. The experimental data

show the validity of scaling and the relation (12.7) already for Q2 > 2 GeV2 and p · q > 1 GeV2. For

very small values of x, however, the data show a strong violation of scaling: As the figure on the
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right side above shows, F2 becomes very large (may be infinity) as x→ 0, and depends on Q2 in this

region.

(3) Idea of Feynman’s parton model (most naive version):

The dominant process for inelastic electron-hadron scattering at largeQ2 (high energies) is elastic scattering

on point-like constituents (partons) 3.

electron hadron

q

k

k’

(p)

+qpi

pi

hadrons (p+q)

For elastic scattering on quark i (with 4-momentum pi and mass p2i = m2
i ) we have 4

(pi + q)2 = m2
i ⇒

Q2

2(pi · q)
= 1 (12.9)

This means: The Bjorken variable of the quark is equal to 1.

If zi is the 4-momentum fraction carried by parton i, then pi = zip, where p =
∑

i pi is the total

4-momentum of the hadron. Then we get from (12.9)

Q2

2zi(p · q)
= 1⇒ zi =

Q2

2(p · q)
= x (12.10)

This means: Only the quark which carries momentum fraction zi = x can interact with the electron!

(Remember that, in the laboratory system, the value of x is determined by the energy and momentum

of the initial and final electron in the scattering process, and is independent of the target proton.)

Because the quark is point-like, the structure function (F2) of quark i with charge ei is (see (12.4)) 5

F2i = e2i δ

(
Q2

2(pi · q)
− 1

)
= e2i δ

(
x

zi
− 1

)
= e2i zi δ(x− zi) = x e2i δ(x− zi) (12.11)

3This principle is similar to Daruma Otoshi: If you hit one piece by giving it a large momentum, this piece takes
up the whole momentum and energy, and the other pieces do not participate in the scattering process. Earlier (in
Sect. 9) we called such a process “quasi-elastic scattering” - In our lectures, “parton” means the same as “quark”.
More generally, it means “quark or gluon”.

4Here i labels the flavor of the quark: i = u (for up-quark), or i = d (for down-quark), etc.
5The square of the proton charge (e2) was not included in the definition of structure functions so far, but was taken

out as a factor in the formula for the cross section. But if we assume that the proton consists of 3 partons (quarks), we
must include the square of the quark charge (e2i ) in the definition of the structure functions for each quark separately.
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Then the total structure function F2 of the proton must be given by

F2(x,Q
2) =

∑
i

∫ 1

0

dzi qi(zi)F2i (12.12)

where qi(z) is the probability to find quark i with momentum fraction z inside the proton, i.e., the

“momentum distribution function” of the quark i. By using (12.11), we get for the structure function

of the proton:

F2 =
∑
i

∫ 1

0

dz qi(z)x e2i δ(x− z) = x
∑
i

e2i qi(x) (12.13)

The same calculation can be done also for the structure function F1: From Eq.(12.4), for quark i we

have F1i = 1
2zi
F2i = 1

2
e2i δ(x− zi), and therefore F1 of the proton is given by

F1(x,Q
2) =

∑
i

∫ 1

0

dzi qi(zi)F1i =
1

2

∑
i

e2i qi(x) (12.14)

We see: The structure functions in the parton model, given by Eqs. (12.13) and (12.14), are inde-

pendent of Q2, which means Bjorken scaling, and satisfy the relation

F2(x) = 2xF1(x) (12.15)

Extension of the naive parton model:

First, let us denote the u-quark distribution simply by u(x) ≡ qu(x) and the d-quark distribution by

d(x) ≡ qd(x).

The proton (p) consists of two “valence (v) u-quarks” 6 with charge eu = 2/3, and one “valence d-quark”

with charge ed = −1/3. We then get the following structure function of the proton in the extended

parton model:

F
(p)
2 (x) = x

(
4

9
u(p)v (x) +

1

9
d(p)v (x)

)
+ (sea quark contributions) (12.16)

where u
(p)
v (x) is the momentum distribution of the valence u - quark in the proton, and d

(p)
v (x) is the

momentum distribution of the valence d - quark in the proton. The normalizations are∫ 1

0

dxu(p)v (x) = 2 ,

∫ 1

0

dx d(p)v (x) = 1 (12.17)

6In addition to the three “valence” quarks (momentum distribution qv(x)), there are also “sea” quarks and anti-
quarks in the proton (momentum distribution qs(x) and qs(x)), because of the spontaneous creation and annihilation
of quark-antiquark pairs from the vacuum. (Generally, qs(x) = qs(x).) Therefore, the total quark distributions are
q(x) = qv(x) + qs(x), and the antiquark distributions are q(x) = qs(x). We will see later that it is the functions
q(x) and q(x) which are defined precisely in quantum field theory (in terms of field operators), and therefore qv(x) is
defined by qv = q(x)− q(x).
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Note: “Valence” quark contributions are dominant for large momentum fractions (x > 0.5)), while

“sea” quark and gluon contributions are dominant for small x. Intuitively, this means that the 3

valence quarks move together like a “cluster”, but the sea quarks and gluons “flatter around” with

small momentum fractions.

Relations (12.17) are called the “number sum rules”: Sea quarks and gluons do not contribute to

baryon number and charge, and therefore the relations (12.17) are satisfied only by the valence quark

distributions. However, (sea quarks + gluons) carry a part of the total momentum of the proton,

i.e., they contribute to the “momentum sum rule”:∫ 1

0

dx x
(
u(p)v (x) + d(p)v (x)

)
+ (sea quark contributions) + (gluon contributions) = 1 (12.18)

This sum rule simply says that 100% of the proton momentum is carried by either valence quarks,

sea quarks, or gluons, because there is nothing more inside the proton.

For the neutron (one valence u-quark and two valence d-quarks) we obtain

F
(n)
2 (x) = x

(
4

9
u(n)v (x) +

1

9
d(n)v (x)

)
+ (sea quark contributions)

= x

(
4

9
d(p)v (x) +

1

9
u(p)v (x)

)
+ (sea quark contributions) (12.19)

In the last relation above, we assumed “flavor symmetry”:

u(p)v (x) = d(n)v (x) , d(p)v (x) = u(n)v (x) (12.20)

which means that u and d quarks differ only by their charge, but otherwise behave in the same way.

(Remember that, in the strong interactions, also the proton and neutron differ only by their charge.)
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The contributions of “sea” quarks to Eq.(12.16) and Eq.(12.19) are almost the same, and cancel if

we take the difference F
(p)
2 (x)− F (n)

2 (x):

Because F
(p)
2 − F (n)

2 = 1
3
x
(
u
(p)
v (x)− d(p)v (x)

)
, the left graph clearly shows that the valence quark

distributions have a peak around x ' 1/3. This is consistent with the naive expectation that each

quark carries 1/3 of the total momentum.

From the experimental data of F2(x) for the proton and neutron (and other data), one can extract

all quark distribution functions (right graph). The gluon distribution function (g(x)) is still very

uncertain, but seems to be very large at small values of x.
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