
13 Derivation of the parton model

Remember (Sect. 11):

The cross section for inelastic inclusive electron-proton scattering was expressed in Eq.(11.1) of Sect.

11, in terms of the hadronic tensor W µν , which is given by the current - current correlation function,

see Eq.(11.9) of Sect. 11.

Here we calculate W µν in the quark model, and derive the parton model formulas for the structure

functions given in Sect. 12. We will use the method of Feynman diagrams, and therefore we first ex-

press the usual product of current operators in Eq.(11.9) of Sect. 9 by the time-ordered product (T - product)

of current operators. Then we can use Wick’s theorem and Feynman diagrams 1.

(1) We first show the following identity:∫
d4z eiq·z 〈p|Jµ(z) Jν(0)|p〉 = 2 Im

{
i

∫
d4z eiq·z 〈p|T (Jµ(z) Jν(0)) |p〉

}
(13.1)

Here the J ’s are current operators (Ĵ of Sect. 11), and the T -product is defined by

T (Jµ(z) Jν(0)) = Θ(z0) Jµ(z) Jν(0) + Θ(−z0) Jν(0) Jµ(z) (13.2)

Here Θ(x) is the usual step function: Θ(x) = 1 if x > 0, and Θ(x) = 0 if x < 0.

Proof of (13.1): (i) Consider the l.h.s. of (13.1). We insert a complete set of hadronic states

(
∑

n |n〉〈n| = 1) between the current operators, and use the z - dependence of the transition matrix

elements (see also Eq.(11.4) of Sect. 11), like

〈p|Jµ(z)|n〉 = ei(p−pn)·z 〈p|Jµ(0)|n〉 (13.3)

Then we can do the z -integration, and get∫
d4z eiq·z 〈p|Jµ(z) Jν(0)|p〉 =

∑
n

(2π)4 δ(4)(p+ q − pn) 〈p|Jµ(0)|n〉 〈n|Jν(0)|p〉

(13.4)

1A direct evaluation of Eq.(11.9), without Feynman diagrams, is also possible: See lecture of R.L. Jaffe, “Deep
inelastic scattering with application to nuclear targets”, in: Relativistic dynamics and quark-nuclear physics, ed. M.B.
Johnson, A. Picklesimer, Wiley, New York, 1986, p. 537.
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(ii) Consider the r.h.s. of (13.1). We use the definition of the T -product Eq.(13.2), and insert a

complete set of hadronic states between the current operators. Using (13.3) we obtain

2 Im

[
i

∫
d4z eiq·z 〈p|T (Jµ(z) Jν(0)) |p〉

]
= 2 Im{i

∫
d4z eiq·z

×
∑
n

(
Θ(z0) e

i(p−pn)·z e−εz
0 〈p|Jµ(0)|n〉 〈n|Jν(0)|p〉+ Θ(−z0) e−i(p−pn)·z eεz

0 〈p|Jν(0)|n〉 〈n|Jµ(0)|p〉
)
}

(13.5)

Here we introduced convergence factors (ε → 0+) for the z0 integrals. The
∫

d3z integration gives

3-momentum conserving δ - functions, and (13.5) becomes

2 (2π)3 Im i
∑
n

{[δ(3)(~q + ~p− ~pn)

∫ ∞
0

dz0 ei(Ep−En+q0+iε)z0〈p|Jµ(0)|n〉 〈n|Jν(0)|p〉

+δ(3)(−~q + ~p− ~pn)

∫ 0

−∞
dz0 e−i(Ep−En−q0+iε)z0〈p|Jν(0)|n〉 〈n|Jµ(0)|p〉]}

Performing the z0 integral, this becomes:

−2 Im
∑
n

(2π)3 [δ(3)(~q + ~p− ~pn)
〈p|Jµ(0)|n〉 〈n|Jν(0)|p〉
Ep − En + q0 + iε

+δ(3)(−~q + ~p− ~pn)
〈p|Jν(0)|n〉 〈n|Jµ(0)|p〉
Ep − En − q0 + iε

] (13.6)

We now use the Cauchy’s formula 2 (for ε→ 0+)

1

A+ iε
= P

1

A
− iπδ(A) (13.7)

where P means the principal value. The imaginary part of (13.6) comes from the second term in

(13.7). Noting that Ep − En < 0 (because the proton state with momentum p is the lowest energy

state for given baryon number = 1) and q0 > 0 (the electron looses energy in the inelastic scattering

process), we see that the denominator of the second term in (13.6) cannot vanish, and therefore this

term gives no contribution to the imaginary part. Then (13.6) becomes finally∑
n

(2π)4 δ(4)(p+ q − pn) 〈p|Jµ(0)|n〉 〈n|Jν(0)|p〉 (13.8)

which is equal to (13.4). This concludes the proof of Eq.(13.1).

2An intuitive check of the δ-function term in this formula is as follows: 1
A+iε = A−iε

A2+ε2 . The imaginary part of this

is equal to − ε
A2+ε2 . If A 6= 0, this is zero in the limit ε → 0+, but if A = 0, this is −∞ in the limit ε → 0+. This is

just the property of −δ(A). The precise relation is ε
A2+ε2 = π δ(A) in the limit ε→ 0+.
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The amplitude for forward Compton scattering on the proton (forward scattering amplitude of pro-

ton (momentum p) and virtual photon (momentum q)) is defined as 3

T µν(p, q) = i 2Ep

∫
d4z eiq·z 〈p|T (Jµ(z) Jν(0)) |p〉 (13.9)

p p

q q

. .
µν

i

Then, from Eq.(11.9) of Sect. 11, and Eq.(13.1), the hadronic tensor can be expressed by the

imaginary part of T µν :

W µν =
1

2π
ImT µν (13.10)

This is the fundamental relation to calculate the hadronic tensor (and structure functions) in any

model.

(2) Now we calculate the Compton amplitude in the quark model. As in Sect. 12, we rely on our

intuition on the Daruma Otoshi, i.e., in the high energy process only one quark (the “active quark”)

will contribute to the scattering, while the other 2 quarks do nothing (“spectator quarks”). The

Compton amplitude is then expressed by the following diagram (“handbag diagram”):

N(p) N(p)

q
q

. .
µν

i

Q(k) Q(k)

Q(k+q)

T
µν

(p,q) = 

Here N(p) means a nucleon (proton) with momentum p, Q(k) means the active quark inside the

proton with momentum k, and the shaded area indicates the propagation of the 2 spectator quarks

(including also sea quarks and interactions). There is a loop in this diagram, and therefore we must

integrate over the momentum k.

3The factor 2Ep arises from our non-covariant normalization of state vectors, as explained in Sect. 10.

3



[Note for specialists: According to Feynman rules, each quark line is translated to iS, where S is the usual

Feynman propagator introduced in Sect.13 of the spring semester. Because i4 = 1, we do not attach i to

propagators in the following.]

Translating this diagram into a formula, we get

T µν(p, q) =

∫
d4k

(2π)4

∑
i=u,d

Tr [Mi(p, k) tµνi (k, q)] (13.11)

Here i = u, d labels the flavor of the active quark, Tr denotes the trace over Dirac indices, and

Mi(p, k) corresponds to the lower part of the handbag diagram:

N(p) N(p)

.

Q(k) Q(k)

M (p,k) = Q

. .β α

βα

In this diagram, the external quark lines (momentum k) represent Feynman propagators, and the

external nucleon line (momentum p) represents the Dirac spinor of the nucleon (u(~p, S)). Because the

Feynman propagator is a Dirac matrix (remember Sect. 13 of the spring semester), Mi(p, k) is also a

Dirac matrix, as indicated by the Dirac indices α and β. The quantity Mi(p, k) can be considered as

the propagator (2-point function) of the quark i = u, d inside the nucleon. It is defined by (see the

previous footnote for the origin of the factor 2Ep)

Mβα
i (p, k) = 2Ep

∫
d4z eik·z 〈p|T

(
ψα(0)ψβ(z)

)
|p〉 (13.12)

Here the ψ’s are the field operators for the active quark with flavor i = u, d (in second quantization),

i.e., ψα(0) creates the quark i at position z = 0, and ψβ(z) annihilates the quark i at position z. By

using methods explained in the next lecture, one can show that the part of (13.12), which contributes

to the structure functions in the Bjorken limit, is real. Therefore, in the following we simply assume

that Mi(p, k) is real.
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The quantity tµνi (p, k) in Eq.(13.11) corresponds to the upper part of the handbag diagram:

q
q

. .
µν

Q(k) Q(k)

Q(k+q)
t

µν
(k,q) = Q

Here the external quark propagators (momentum k) are not included (because they have been in-

cluded already in the definition of Mi).

tµνi (k, q) is the amplitude for forward Compton scattering on the quark i = u, d, and is given by

tµνi (k, q) = (iei)
2 γµ S(k + q) γν = −e2i γµ

6k + 6q +mi

(k + q)2 −m2
i + iε

γν (13.13)

where we used the form of the Feynman propagator given in Sect. 13 of the spring semester.

[Note for specialists: According to Feynman rules, a quark-photon vertex is translated into (−ieiγµ).]

The imaginary part of (13.13) is given by (see Eq.(13.7))

Im tµνi (k, q) = π e2i δ
(
(k + q)2 −m2

i )
)
γµ (6k + 6q +mi) γ

ν (13.14)

Here we use

(k + q)2 −m2
i = k2 + q2 + 2k · q −m2

i = 2p · q
(
−x+

k · q
p · q

+
k2 −m2

i

2 p · q

)
where x = −q2/(2p · q) is the Bjorken variable for the nucleon. Then (13.14) becomes

Imtµνi (k, q) =
π e2i

2p · q
δ

(
x− k · q

p · q
− k2 −m2

i

2 p · q

)
γµ (6k + 6q +mi) γ

ν (13.15)

The Bjorken limit (B.L., see Sect. 12) means Q2 = −q2 → ∞ and p · q → ∞ such that the ratio

x = Q2/(2p · q) is fixed. (Note that 0 < x < 1). In this limit (13.15) simplifies to

Im tµνi (k, q)
B.L.−→ π e2i

2p · q
δ

(
x− k · q

p · q

)
γµ 6q γν (13.16)

The hadronic tensor is given by W µν = 1
2π

ImT µν (see Eq.(13.10)), and from (13.11) and (13.16) we

obtain in the quark model

W µν(p, q) =
1

4p · q

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k) γµ 6q γν ] (13.17)
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Use 6q = γλqλ, and the following formula for the product of three Dirac γ-matrices:

γµ γλ γν =
(
gµλ gνσ + gµσ gνλ − gµν gλσ

)
γσ − iεµλνσ γσγ5 (13.18)

Then we can separate the symmetric and antisymmetric parts of the hadronic tensor (13.17):

W µν(p, q) = W µν
s +W µν

a (13.19)

where

W µν
s (p, q) =

qλ
4p · q

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

) (
gµλgνσ + gµσgνλ − gµν gλσ

)
× Tr [Mi(p, k) γσ] (13.20)

W µν
a (p, q) = iεµνλσ

qλ
4p · q

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k) γσγ5] (13.21)

We now consider each part separately:

• The symmetric part W µν
s has been parametrized in terms of the structure functions F1 and F2,

see Eq.(11.15) of Sect.11:

W µν
s (p, q) = F1(x,Q

2)

(
−gµν +

qµqν

q2

)
+ F2(x,Q

2)
p̃µp̃ν

p · q
(13.22)

where we defined the 4-vector p̃µ by

p̃µ ≡ pµ − p · q
q2

qµ (13.23)

such that p̃ · q = 0. By comparing the coefficients of gµν in (13.20) and (13.22), we can obtain

F1 as

F1(x,Q
2) =

1

4(p · q)

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k)6q] (13.24)

In order to get also F2, we note that the trace (contraction of µ and ν) of the Lorentz tensor

(. . . ) in (13.20) is equal to

gµλg σ
µ + gµσg λ

µ − 4gλσ = 2gλσ − 4gλσ = −2gλσ

Comparing this with the original form (13.20), we can say the following:
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The trace (Ws)
µ
µ must be equal to twice the coefficient of gµν . (*)

From (13.22), this means that

(Ws)
µ
µ = −3F1(x,Q

2) +
p̃2

p · q
F2(x,Q

2) = −2F1(x,Q
2) (13.25)

where the first equality follows from (13.22) and the second equality from the statement (*).

In the Bjorken limit, it follows from the definition of p̃µ (see Eq.(13.23)) and the definition of

the variable x = −q2/(2p · q), that p̃2/(p · q) = 1/(2x). By using this relation in (13.25), we can

obtain F2 as

F2(x,Q
2) = 2xF1(x,Q

2) (13.26)

=
x

2(p · q)

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k) 6q] (13.27)

We can express the results (13.24) and (13.27) in the following way:

F1(x,Q
2) =

1

2

∑
i

e2i qi(x) , F2(x,Q
2) = x

∑
i

e2i qi(x) (13.28)

where we defined the “spin independent quark distribution function” qi(x) by

qi(x) =
1

2(p · q)

∫
d4k

(2π)4
δ

(
x− k · q

p · q

)
Tr [Mi(p, k)6q] (13.29)

• The antisymmetic part W µν
a has been parametrized in terms of the structure functions g1 and

g2, see Eq.(11.16) of Sect. 11:

W µν
a =

M

p · q
iεµνλσ qλ

[
g1(x,Q

2)Sσ + g2(x,Q
2)

(
Sσ −

(S · q) pσ
p · q

)]
(13.30)

Comparison with the quark model expression Eq.(13.21) gives immediately

Sσ g1(x,Q
2) =

1

4M

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k) γσγ5]

≡ Sσ
1

2

∑
i

e2i ∆qi(x) (13.31)

g2(x,Q
2) = 0 (13.32)

In (13.31) we defined the “spin-dependent quark distribution function” by the following rela-

tion:

Sµ ∆qi(x) =
1

2M

∫
d4k

(2π)4
δ

(
x− k · q

p · q

)
Tr [Mi(p, k) γµ γ5] (13.33)
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In order to express the result (13.33) similar to Eq.(13.29), we contract both sides of Eq.(13.33) with

qµ, and divide by (p · q):(
M
S · q
p · q

)
∆qi(x) =

1

2(p · q)

∫
d4k

(2π)4

∑
i

e2i δ

(
x− k · q

p · q

)
Tr [Mi(p, k) 6q γ5]

(13.34)

Note that both functions (13.29) and (13.34) are defined in the Bjorken limit. In the next lecture, we

will see how to calculate the Bjorken limit, and why one can interpret (13.29) and (13.34) as “quark

distribution functions”.

Here we explain only the result:

Consider a nucleon with 4-momentum pµ and spin direction parallel (positive helicity) or anti-parallel

(negative helicity) to its 3-momentum. Denote the probability to find a quark, with flavor i = u, d,

momentum fraction x, and spin direction parallel (↑) or anti-parallel (↓) to the nucleon spin, by q↑i (x)

and q↓i (x). Then the functions (13.29) and (13.34) can be expressed as

qi(x) = q↑i (x) + q↓i (x) (13.35)

∆qi(x) = q↑i (x)− q↓i (x) (13.36)

From this interpretation, and the (naive) assumption that the nucleon consists only of 3 valence

quarks, it follows that∫ 1

0

dx
∑
i

qi(x) = 3 ,

∫ 1

0

dx x
∑
i

qi(x) = 1 ,

∫ 1

0

dx
∑
i

∆qi(x) = 1 (13.37)

Here the first relation (“number sum rule”) means the the nucleon consists of 3 valence quarks, the

second relation (“momentum sum rule”) means that the 3 valence quark carry 100% of the nucleon

momentum, and the third relation (“spin sum rule”) means that they carry 100% of the nucleon

spin.

However, in the nucleon there are also “sea quarks” (qq pairs) and gluons, which carry no baryon

number but can carry momentum and spin. Therefore, in the extended parton model, the number

sum rule remains true for the valence quarks, but the momentum sum rule and the spin sum rule

will be modified.

More details will be explained in the next lecture.
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