
14 Physical meaning of structure functions and quark dis-

tribution functions

Remember (Sec. 13): (1) The spin-independent structure functions F1(x), F2(x) in the Bjorken limit

are given by F1(x) = 1
2

∑
i=u,d e

2
i qi(x) and F2(x) = x

∑
i=u,d e

2
i qi(x). Here the spin-independent

quark distribution function qi(x) is defined by Eq.(13.29). If we insert here Eq.(13.12) for Mi(p, k),

we obtain the more explicit form 1

qi(x) =
Ep
p · q

∫
d4k

(2π)4

∫
d4z eik·z δ

(
x− k · q

p · q

)
〈p, S|T

(
ψi(0)6q ψi(z)

)
|p, S〉 (14.1)

(2) The spin-dependent structure functions g1(x), g2(x) in the Bjorken limit are given by g1(x) =

1
2

∑
i=u,d e

2
i ∆ qi(x) and g2(x) = 0. Here the spin-dependent quark distribution function ∆qi(x) is

defined by Eq.(13.34). If we insert here Eq.(13.12) for Mi(p, k), we obtain the more explicit form(
M
S · q
p · q

)
∆ qi(x) =

Ep
p · q

∫
d4k

(2π)4

∫
d4z eik·z δ

(
x− k · q

p · q

)
〈p, S|T

(
ψi(0)6q γ5 ψi(z)

)
|p, S〉 (14.2)

Why can we call (14.1) and (14.2) “quark distribution functions”? Let us first check the normaliza-

tions: If we integrate over x, the delta functions in (14.1) and (14.2) go away. Then the integral d4k
(2π)4

gives δ(4)(z), and we obtain ∫ 1

0

dx qi(x) =
Ep
p · q
〈p, S|ψi(0) γµ ψi(0)|p, S〉 qµ (14.3)(

M
S · q
p · q

) ∫ 1

0

dx∆ qi(x) =
Ep
p · q
〈p, S|ψi(0) γµ γ5 ψi(0)|p, S〉 qµ (14.4)

where we left out the time-ordering symbol T , because both quark field operators now appear at

the same space-time point z = 0. In our non-covariant normalization of the state |p, S〉 we have the

following relations 2 :

〈p, S|ψi(0) γµ ψi(0)|p, S〉 = Ni

(
M

Ep
u(~p, S) γµ u(~p, S)

)
= Ni

pµ

Ep
(14.5)

〈p, S|ψi(0) γµ γ5 ψi(0)|p, S〉 = (∆Ni)

(
M

Ep
u(~p, S) γµ γ5 u(~p, S)

)
= (∆Ni)

M

Ep
Sµ (14.6)

1In this Section, we also attach the flavor label to the quark fields (ψi), in order to make the flavor dependence
explicit. Also, we write |p, S〉 for the nucleon state vectors in order to indicate the spin direction more explicitly.

2To derive those relations one needs second quantization, but they can be understood intuitively as follows: For
relation (14.5), consider the case µ = 0, where ψ†iψi is the operator for the number density of quarks with flavor

i. Then 〈p, S|ψ†i ψi|p, S〉 = Ni

V 〈p, S|p, S〉 = Ni, where we used our non-covariant normalization 〈p, S|p, S〉 = V , see

Sect. 10. In a similar way, for relation (14.6), consider the case µ = 1, 2, 3, where ψi~γ γ5 ψi is the operator for
the spin density of quarks with flavor i, i.e.; (the number density of quarks with spin parallel to the nucleon spin)
minus (the number density of quarks with spin anti-parallel to the nucleon spin). Its expectation value is given by

〈p, S|ψ†i ~γγ5 ψi|p, S〉 = ∆Ni

V
M
Ep

~S 〈p, S|p, S〉 = ∆Ni
M
Ep

~S.
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where Ni ≡ N↑i +N↓i is the number of quarks (of either spin direction) with flavor i = u, d inside the

hadron (proton), and ∆Ni ≡ N↑i − N
↓
i is : (the number of quarks with spin parallel to the nucleon

spin) minus (the number of quarks with spin anti-parallel to the nucleon spin) with flavor i = u, d

inside the hadron. In the last step of Eq.(14.6), we used Eq.(9.7) of the spring semester for the spin

4-vector Sµ (except that now we do not have a factor 1
2

in the definition of Sµ). We then obtain

from Eq.(14.3) and (14.4): ∫ 1

0

dx qi(x) = Ni = N↑i +N↓i (14.7)∫ 1

0

dx∆qi(x) = ∆Ni = N↑i −N
↓
i (14.8)

The relation (14.7) suggests that qi(x) may be the sum of probability densities to find a quark (flavor

i) with spin parallel (↑) and anti-parallel (↓) to the nucleon spin, with some value of x. Similarly,

relation(14.8) suggests that ∆qi(x) may be the difference of probability densities to find a quark (fla-

vor i) with spin parallel (↑) and anti-parallel (↓) , to the nucleon spin, with some value of x.

In order to see the meaning of the variable x, we define light-cone momentum components as follows:

k± ≡ 1√
2

(
k0 ± k3

)
, ~kT =

(
k1, k2

)
(14.9)

This is a simple variable transformation from the Minkowski 4-vector components kµ = (k0, k1, k2, k3)

to the light-cone 4-vector components kµ = (k+, k−, k1, k2). We also define k± ≡ 1√
2

(k0 ± k3), so

that k+ = k− and k− = k+. The scalar product of two 4-vectors a and b can be rewritten in terms

of light-cone components by

a · b = a0 b0 − ~a ·~b = a+ b− + a− b+ − ~aT ·~bT (14.10)

We will also define the light-cone plus (+) and minus (-) components of the Dirac γ-matrices as

γ± =
1√
2

(
γ0 ± γ3

)
, γ± =

1√
2

(γ0 ± γ3)

so that γ+ = γ− and γ− = γ+.

We now choose a frame where the momentum transfer from the electron to the nucleon is along the

−ẑ direction: In usual coordinates, qµ = (q0, 0, 0, q3) with q3 < 0. Then the Bjorken limit (B.L.)
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corresponds to the limit q0 →∞, q3 → −∞, such that q− = (q0−q3)/
√

2→∞ and q+ = (q0+q3)
√

2

is finite, because in this case the original definitions of the B.L. are satisfied:

q2 = 2q+ q−
B.L.−→∞ , x =

−q2

2p · q
=

−q+ q−

p+ q− + p− q+
B.L.−→ −q

+

p+
= finite (14.11)

From the second relation in (14.11) we see that, in the Bjorken limit, q+
B.L.−→ −p+ x = − 1√

2
(Ep + p3) x.

For example, in the rest frame of the hadron, this is equal to −(Mx)/
√

2.

Now we can express the functions qi(x) of Eq.(14.1) and ∆qi(x) of Eq.(14.2) in terms of light-cone

coordinates. For this, we note the following most important relation in the Bjorken limit:

k · q
p · q

=
k+ q− + k− q+

p+ q− + p− q+
B.L.−→ k+

p+
= x (14.12)

This means that x is really a momentum fraction carried by the quark, but not of a usual momentum

component (x, y, z component), but of a light-cone momentum component: k+ = p+x. For example,

in the rest frame of the hadron, k+ = (Mx)
√

2.

For the other factors in Eqs.(14.1) and (14.2), we use the relation

6q
p · q

=
γ+ q− + γ− q+

p+ q− + p− q+
B.L.−→ γ+

p+

Taking also the Bjorken limit on the l.h.s. of Eq.(14.2) gives (S · q)/(p · q) B.L.−→ S+/p+. Then the

functions qi(x) and ∆qi(x) of Eq.(14.1) and (14.2) can be expressed as

qi(x) =
Ep
p+

∫
d4k

(2π)4
δ

(
x− k+

p+

)∫
d4z eik·z〈p, S|T

(
ψi(0) γ+ ψi(z)

)
|p, S〉 (14.13)(

MS+

p+

)
∆qi(x) =

Ep
p+

∫
d4k

(2π)4
δ

(
x− k+

p+

)∫
d4z eik·z〈p, S|T

(
ψi(0) γ+ γ5 ψi(z)

)
|p, S〉

(14.14)

Note that the δ-function in those expressions fixes the light-cone momentum component k+ of the

quark as k+ = p+ x. Using here k · z = k+z− + k−z+ − ~kT · ~zT , we can integrate over k− and ~kT :∫
dk− d2kT

(2π)3
ei(k

− z+−~kT ·~zT ) = δ(z+) δ(2)(~zT ) (14.15)

and Eqs.(14.13) and (14.14) become

qi(x) = Ep

∫
dz−

2π
e(p

+x)z−〈p, S|T
(
ψi(0) γ+ ψi(z

−)
)
|p, S〉 (14.16)(

MS+

p+

)
∆qi(x) = Ep

∫
dz−

2π
e(p

+x)z−〈p, S|T
(
ψi(0) γ+ γ5 ψi(z

−)
)
|p, S〉 (14.17)
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where ψi(z
−) ≡ ψi(z

+ = 0, z−, ~zT = ~0T ). 3 The quark field operators in (14.16) and (14.17) are

separated by a distance on the light cone, because z+ = 0 means that z0 + z3 = 0. Therefore (14.16)

and (14.17) can be called light-cone correlation functions. The time-ordering symbol T in those

relations is actually unnecessary. To see this, we note that, for z+ = 0 but finite ~zT , the usual time

variable is given by z0 = z−/
√

2. Therefore, denoting the Dirac indices of the quark field operator

by α, β = 1, . . . 4, we have for z+ = 0 4:

T
(
ψ

(α)
(0)ψ(β)(z−, ~zT )

)
= θ(−z−) ψ

(α)
(0)ψ(β)(z−, ~zT )− θ(z−) ψ(β)(z−, ~zT )ψ

(α)
(0)

= ψ
(α)

(0)ψ(β)(z−, ~zT )− θ(z−) {ψ(α)
(0) , ψ(β)(z−, ~zT )}+

= ψ
(α)

(0)ψ(β)(z−, ~zT )

where {. . . }+ denotes the anticommutator. (For any 2 operators a, B, the anticommutator is defined

by {A,B}+ ≡ AB + BA.) In the second step of the above relation we used θ(−z0) = 1 − θ(z0),

and in the last step we used that the anticommutator between fermion field operators separated by

a space-like distance z2 = 2z+z− − ~z2T = −~z2T < 0 vanishes because of causality 5. Then (14.16) and

(14.17) become finally

qi(x) = Ep

∫
dz−

2π
e(p

+x)z−〈p, S|ψi(0) γ+ ψi(z
−)|p, S〉 (14.18)(

M
S+

p+

)
∆qi(x) = Ep

∫
dz−

2π
e(p

+x)z−〈p, S|ψi(0) γ+ γ5 ψi(z
−)|p, S〉 (14.19)

Let us check here the sum rules (14.7) and (14.8) again: If we integrate the exponentials in (14.18) and

(14.19) over x, we get a factor (2π)δ(p+z−) = 2π
p+
δ(z−), and from Eq.(14.5) we have 〈p, S|ψi γ+ ψi|p, S〉 =

Ni(p
+/Ep) and 〈p, S|ψi γ+ γ5ψi|p, S〉 = (∆Ni)

M
Ep
S+. Therefore the sum rules (14.7) and (14.8) are

satisfied.

3We define that the limit z+ = 0 is taken first, and then ~zT = 0. In terms of light-cone momenta, this means
that in Eq.(14.15), we first integrate over k−, keeping the transverse momenta ~kT fixed, and then integrate over the

transverse momenta of the quarks. (It is also possible to keep ~kT finite, then function qi(x,~kT ) is called a “transverse
momentum dependent quark distribution function”. This is a subject of current experimental and theoretical research
, but we cannot consider this case in our lectures.)

4Note that the T -product of fermion field operators A(x) and B(y) is generally defined by T (A(x)B(y)) = θ(x0 −
y0)A(x)B(y)− θ(y0 − x0)B(y)A(x), where θ(x) is the usual step function.

5Two events separated by a light-like distance are independent of each other, because no information (not even a
light signal) can be exchanged between them. In quantum field theory, this means that the commutator (for boson
operators) or the anticommutator (for fermion operators) vanishes if these operators are saparated by a light-like
distance.
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In order to get a more explicit expression for ∆qi(x), we consider the case where the nucleon has

definite helicity 6 λN = ±1. This means that the spin vector ~S, which is a unit vector in the direction

of the spin of the nucleon, is given by ~S = λN ~̂p. We insert this relation into the expression for the

spin 4-vector, which is given in usual components µ = 0, 1, 2, 3 by (see Eq.(11.14) of Sect. 11)

Sµ =

(
~p · ~S
M

, ~S +
~p(~p · ~S)

M(Ep +M)

)
to get

Sµ = λN

(
p

M
, ~̂p

Ep
M

)
(14.20)

where p ≡ |~p|. If we choose the direction ~̂p along the positive z-direction 7 , we obtain for the usual

components µ = 0, 1, 2, 3: Sµ = λN

(
p
M
, 0, 0, Ep

M

)
. For the light-cone component this gives S+ =

λN
p+

M
, and the factor on the l.h.s. of Eq.(14.19) becomes the helicity of the nucleon:

(
M S+

p+

)
= λN .

Therefore, for a nucleon with helicity λN = ±1 moving in the positive z-direction, we obtain from

(14.19):

∆qi(x) = λN Ep

∫
dz−

2π
e(p

+x)z−〈p, S|ψi(0) γ+ γ5 ψi(z
−)|p, S〉 (14.21)

15 Field theory on the light cone (an introduction)

So, why are qi(x) and ∆qi(x) of Eqs.(14.18), (14.21) probability distributions? To understand this, we

remember that, in usual Minkowski coordinates, the field quantization is done by imposing conditions

like

{ψ(α)(t, ~z), ψ†(β)(t, ~z′)}+ = δ(3)(~z − ~z′), or {ψ(α)(~z, t), ψ(β)(~z′, t)}+ = 0 etc, at equal time (t). With

the light-cone variables defined by

z± =
1√
2

(
z0 ± z3

)
, ~zT =

(
z1, z2

)
we can impose similar quantization conditions, but we must decide whether we use z+ or z− as the

“light-cone time”. Usually one uses z+ as the “light-cone time”, and performs the field quantization

6We note that the function ∆qi(x) itself is independent of the choice for the nucleon spin or momentum components.
The matrix element on the r.h.s. of Eq.(14.19), however, depends on the choice of the nucleon spin and momentum

components, and this dependence is expressed by the factor
(
M S+

p+

)
on the l.h.s. of (14.19).

7Note that we assumed already that ~q is in the negative z - direction (q1 = q2 = 0, q3 < 0), which was just a
definition of the z - axis. Then, in the laboratory system (p = 0), (14.20) simply means that the target nucleon is
polarized along the z - axis. More generally, one can apply a Lorentz transformation from the laboratory system to a
system where the initial nucleon and virtual photon move collinear (the nucleon along ẑ and the photon along −ẑ).
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at equal values of z+.

The Lagrangian of the Dirac theory (see Eq.(1.2) of Sect. 1) can easily be expressed by light-cone

variables, for example for the free part:

L = ψ (iγµ∂µ −m)ψ = ψ
(
iγ+∂+ + iγ−∂− + i~γT · ~∇T −m

)
ψ (15.1)

where ∂µ = ∂
∂zµ

. But then one notes that the “time” derivative ∂+ = ∂
∂z+

acts only on a part of

the field ψ, i.e., not all components of ψ are dynamical variables. To see this, one introduces the

following decomposition of the field ψ:

ψ = ψ+ + ψ− , where

ψ± ≡ P± ψ =
1√
2
γ0γ± ψ

By using (γ+)2 = (γ−)2 = 0, we see that these operators P± are projection operators: P+ + P− = 1,

(P+)2 = P+, (P−)2 = P−, P+ P− = P− P+ = 0. Then we see from (15.1) that the “time derivative”

∂+ = ∂
∂z+

does not act on ψ−, because γ+ψ− = γ+ P−ψ = 1√
2
γ+ γ0 γ−ψ = 1√

2
(γ+)

2
γ0ψ = 0. The

conclusion is that, in the light-cone field theory, only the components

φ ≡ P+ ψ =
1√
2
γ0γ+ ψ (15.2)

are dynamical variables, and the remaining part (P−ψ) should be eliminated by using the field equa-

tions, before imposing the quantization conditions.

Home work: (i) Show that the Lagrangian (15.1) can be expressed as follows:

L =
√

2
(
ψ†+ i∂+ψ+ + ψ†− i∂−ψ−

)
− ψ†+

(
i~αT · ~∇T + γ0m

)
ψ− − ψ†−

(
i~αT · ~∇T + γ0m

)
ψ+

(ii) Derive the equations of motion (Dirac equations) for ψ+ and ψ−.

(iii) Eliminate ψ−, i.e., express ψ− in terms of ψ+. To do this, use the following relation for the

inverse of the operator ∂−:(
1

∂−
f

)
(x−) =

1

2

∫ ∞
−∞

dy− ε(x− − y−) f(y−)

where ε(x) ≡ θ(x)− θ(−x).
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Returning now to (14.18) and (14.21), we note that

ψ(0) γ+ ψ(z−) = ψ†(0)γ0γ+ψ(z−) =
√

2φ†(0)φ(z−)

ψ(0) γ+ γ5 ψ(z−) = ψ†(0)γ0γ+ γ5ψ(z−) =
√

2φ†(0) γ5φ(z−) (15.3)

where we used (15.2) and also P †+ = P+, (P+)2 = P+, and [P+, γ5] = 0. We see that qi(x) and ∆qi(x)

can be expressed only by the dynamical field φ = P+ ψ. In light cone field theory, we must also

change the normalization of the hadron state vector |p, S〉 according to 8

|p, S〉 →

√
p+

Ep
|p, S〉 (15.4)

with 〈p, S|p, S〉 = V as before. By using (15.3) and (15.4), the expressions (14.18) and (14.21)

become

qi(x) = p+
√

2

∫
dz−

2π
e(p

+x)z−〈p, S|φ†i (0)φi(z
−)|p, S〉 (15.5)

∆qi(x) = p+
√

2

∫
dz−

2π
e(p

+x)z−〈p, S|φ†i (0) γ5φi(z
−)|p, S〉 (15.6)

Now we introduce the Fourier expansions of the quark field operators φ(z−, ~zT , z
+) and φ†(z−, ~zT , z

+)

for fixed “time” z+, in the same way as in the usual second quantization method:

φ(z−, ~zT , z
+) =

∫
dk+ d2kT
(2π)3/2

√
m

k+

∑
s=±1

bs(k
+, ~kT )u+(k+, ~kT ; s) e−ik

+z− ei
~kT ·~zT + (antiquark term)

(15.7)

φ†(z−, ~zT , z
+) =

∫
dk+ d2kT
(2π)3/2

√
m

k+

∑
s=±1

b†s(k
+, ~kT )u†+(k+, ~kT ; s) eik

+z− e−i
~kT ·~zT + (antiquark term)

(15.8)

8The reason is as follows: Our state |p, S〉 in “non-covariant normalization” was defined such that |p, S〉〈p, S| is the
residue at the pole (p0 = Ep) of the Feynman propagator. That is, the pole term of the Feynman propagator is given

by
|p, S〉〈p, S|
p0 − Ep

. This is expressed in terms of light-cone variables as follows:

|p, S〉〈p, S|
p0 − Ep

p0'Ep≡ 2Ep
|p, S〉〈p, S|
p2 −M2

= 2Ep
|p, S〉〈p, S|

2p+p− − ~p2
T −M2

=
Ep

p+

|p, S〉〈p, S|
p− − εp

where εp =
~p2
T +M2

2p− . Because the variable p− plays the role of “energy” (it is conjugate to the “time” variable x+), the
correctly normalized states in the light-cone theory should be defined by the residues of the Feynman propagator at
the pole p− = εp. This leads to Eq.(15.4).
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where b†s(k
+, ~kT ) creates a quark with light-cone momentum components (k+, ~kT ) and (twice the )

spin projection s = ±1 along the spin direction of the nucleon, bs(k
+, ~kT ) annihilates a quark, and

the spinor u+ is defined by u+ ≡ P+u, where u is our usual Dirac spinor (normalized by uu = 1),

but expressed by light-cone momentum components. (The explicit form of u+(k+, ~kT ; s) is given in

the Appendix.)

We now introduce the field expansions (15.7) and (15.8) into Eqs.(15.5) and (15.6). In the calculation,

we use the following relation which follows from momentum conservation:

〈p, S|b†s(k+
′
, ~k′T ) bs(k

+, ~kT )|p, S〉 = δ(k+
′ − k+) δ(2)(~k′T − ~kT )

(2π)3

V
〈p, S|b†s(k+, ~kT ) bs(k

+, ~kT )|p, S〉

and the following spinor matrix elements, which are derived in the Appendix:

u†+(k+, ~kT ; s)u+(k+, ~kT ; s) =
k+√
2m

(15.9)

u†+(k+, ~kT ; s) γ5 u+(k+, ~kT ; s) = ± k+√
2m

(for s = ±1) (15.10)

The results are as follows:

qi(x) =
p+

V

∫
d2kT 〈p, S|b†i,↑(p

+x,~kT ) bi,↑(p
+x,~kT ) + b†im↓(p

+x,~kT ) bi,↓(p
+x,~kT )|p, S〉

(15.11)

∆qi(x) =
p+

V

∫
d2kT 〈p, S|b†i,↑(p

+x,~kT ) bi,↑(p
+x,~kT )− b†i,↓(p

+x,~kT ) bi,↓(p
+x,~kT )|p, S〉

(15.12)

Homework: Derive Eqs.(15.11) and (15.12) by using the relations (15.5) - (15.10).

Check of the sum rules (14.7) and (14.8): Using k+ = p+x we get∫ 1

0

dx qi(x) =
1

V

∫ p+

0

dk+
∫

d2kT 〈p, S|b†i,↑(k
+, ~kT ) bi,↑(k

+, ~kT ) + b†i,↓(k
+, ~kT ) bi,↓(k

+, ~kT )|p, S〉

= N↑i +N↓i ≡ Ni (15.13)∫ 1

0

dx∆qi(x) =
1

V

∫ p+

0

dk+
∫

d2kT 〈p, S|b†i,↑(k
+, ~kT ) bi,↑(k

+, ~kT )− b†i,↓(k
+, ~kT ) bi,↓(k

+, ~kT )|p, S〉

= N↑i −N
↓
i ≡ ∆Ni (15.14)

Here we used the familiar fact that b†i,s(k
+, ~kT )bi,s(k

+, ~kT ) is the number density of quarks with fla-

vor i, momentum components (k+, ~kT ), and spin component parallel to the nucleon spin (s =↑) or

antiparallel to the nucleon spin (s =↓). (Remember that our normalization of the state vector is
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〈p, S|p, S〉 = V .)

The results (15.11) and (15.12) clearly show our previous conjectures:

• qi(x) is the sum of probability densities to find a quark (flavor i) with spin parallel (↑) and anti-

parallel (↓) to the nucleon spin, with light-cone momentum fraction x = k+/p+. The integral

(15.13) gives the number of (valence) quarks with flavor i in the nucleon, and is therefore called

the “number sum rule”. In the naive quark model for the proton, we expect Nu = 2, Nd = 1

(Nu +Nd = 3).

• ∆qi(x) is the difference of probability densities to find a quark (flavor i) with spin parallel (↑)

and anti-parallel (↓) to the nucleon spin, with light-cone momentum fraction x = k+/p+. The

integral (15.14) gives the contribution of (valence) quarks to the spin of the nucleon, and is

therefore called the “spin sum rule”. In the naive quark model, we expect ∆Nu + ∆Nd = 1,

i.e., 100% of the nucleon spin comes from the spin of the quarks 9.

16 The spin crisis of the proton (an introduction)

Remember from Sect. 13: The spin-dependent structure function of the proton g
(p)
1 in the Bjorken

limit of the parton model, taking into account only up and down quark contributions, takes the form

10

g
(p)
1 (x) =

1

2

(
4

9
∆u(p)(x) +

1

9
∆d(p)(x)

)
+ (antiquark contributions) (16.15)

For the neutron, we have

g
(n)
1 (x) =

1

2

(
4

9
∆u(n)(x) +

1

9
∆d(n)(x)

)
+ (antiquark contributions)

=
1

2

(
4

9
∆d(p)(x) +

1

9
∆u(p)(x)

)
+ (antiquark contributions) (16.16)

Here we used the flavor symmetry: ∆u(p)(x) = ∆d(n)(x), and ∆d(p)(x) = ∆u(n)(x).

The parton model predicts that g
(p)
2 (x) = g

(n)
2 (x) = 0.

9In the SU(6) quark model for the proton, ∆Nu = 4
3 and ∆Nd = − 1

3 , which means that the spins of the two up
quarks are parallel to the nucleon spin, and the spin of the down quark is antiparallel to the proton spin.

10As in Sect. 12, we simply write ∆u(p)(x) ≡ q
(p)
u for the up-quark distribution in the proton, and ∆d(p)(x) ≡ q

(p)
d

for the down-quark distributions.
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Experimental data:

As in Sect. 12, we plot experimental data for the structure functions for several values of Q2 > 2

GeV2 as functions of x:

We see that scaling is valid (the structure functions depend only on x, not on Q2, as long as Q2 > 2

GeV2), and that g2 is small (in the parton model it is zero).

From these (and also other) data one can get ∆u(p)(x) and ∆d(p)(x). In the extended parton

model, these distributions are separated into “valence” (v) quark and “sea” (s) quark contributions:

∆u(p)(x) = ∆u
(p)
v (x)+∆u

(p)
s (x). Because the sea quarks always come in qq pairs, we have ∆u

(p)
s (x) =

∆u(p)(x), etc. In inclusive electron-proton scattering, only the sum ∆u(p)(x) = ∆u
(p)
v (x) + ∆u

(p)
s (x)

can be measured. But there are other experiments 11, from which one can get the antiquark distri-

butions, like ∆u(p)(x) = ∆u
(p)
s (x), etc. Then the valence quark distributions can be obtained from

∆u
(p)
v (x) = ∆u(p)(x)−∆u

(p)
s (x).

11These are proton-proton collisions, where a lepton pair (`+`−, called “Drell-Yan pair”) is observed in the final
state. In the parton model, the elementary process is: (quark)hadron 1 + (antiquark)hadron 1 −→ γ −→ `+`−. A parton
model analysis of this process give information on the product of quark and antiquark distribution functions.
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The result of such an analysis of spin dependent parton distributions in the proton looks as follows:

These results are very surprising, because the contribution of the spin of the quarks to the spin of

the proton comes out very small: Including the contribution of strange (s) quarks 12, the result is:

∆u(p) + ∆d(p) + ∆s(p) = 0.29± 0.06 (16.17)

Here we defined

∆q(p) ≡
∫ 1

0

dx
(
∆q(p)(x) + ∆q(p)(x)

)
=

∫ 1

0

dx
(
∆q(p)v (x) + 2∆q(p)s (x)

)
(q = u, d, s) (16.18)

Therefore, only about 30 % of the proton spin is carried by the spin of the quarks and antiquarks!

This is called the “spin crisis” (or “spin puzzle”): From where comes the rest of about 70 % ?

So, from where comes the surprising result (16.17)? There are 3 necessary informations:

1. The integral of the measured structure function (16.15): Including the s quark contribution,∫ 1

0

dx g
(p)
1 (x) =

1

2

(
4

9
∆u(p) +

1

9
∆d(p) +

1

9
∆s(p)

)
= 0.153 (16.19)

12The strange quark (s) in the proton is always a “sea quark”, i.e., in our notation ∆s(p)(x) = ∆s
(p)
s = ∆s(p), where

the subscript s means “sea quark”.
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2. The axial vector coupling constant (gA = GA/GV = 1.26) for the β-decay n→ p+ e− + νe (on

the quark level: d→ u+ e−+ νe) is defined by the following matrix element of the axial vector

current:

〈p, S|
(
ψu(0)γµγ5 ψu(0)− ψd(0)γµγ5 ψd(0)

)
|p, S〉

≡ gA

(
M

Ep
u(~p, S)γµγ5 u(~p, S)

)
= gA

M

Ep
Sµ (16.20)

Comparison with Eq.(14.6) gives 13

∆u(p) −∆d(p) = gA = 1.26 (16.21)

This is called the “Bjorken sum rule”.

3. In a similar way, the axial vector coupling constant for the β-decay Σ− → n+ e− + νe (on the

quark level: s→ u+ e− + νe) gives the following sum rule:

∆u(p) + ∆d(p) − 2∆s(p) = 0.59 (16.22)

Then from the three independent relations (16.19), (16.21), (16.22), one obtains the surprisingly

small value (16.17).

At present, it is not yet clear whether the remaining 70% of the proton spin comes from

• orbital angular momentum of quarks

• spin of gluons

• orbital angular momentum of gluons.

The new electron-ion collider (under construction at Brookhaven Lab in the US) will probably solve

this puzzle.

13Remember that here we write ∆q (with q = u, d, s) instead of ∆Nq.
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Appendix

The form of the positive energy Dirac spinor with normalization uu was given in Sect. 4 of the spring

semester (see Eq.(4.16)):

u(~k, s) =

√
Ek +m

2m

(
ϕs

~σ·~k
Ek+m

ϕs

)
(16.23)

where ϕs is a 2-component Pauli spinor. In order to get the spinor u+ = P+ u, we need to multiply

P+ =
1√
2
γ0 γ+ =

1

2
γ0
(
γ0 + γ3

)
=

1

2

(
1 + α3

)
=

1

2

(
1 σ3
σ3 1

)
(16.24)

This gives

u+(~k, s) = P+ u(~k, s) =
1

2

√
Ek +m

2m

(
1 + σ3(~σ·~k)

Ek+m

σ3 + (~σ·~k)
Ek+m

)
ϕs (16.25)

We can simplify this by writing it in the following form:

u+(~k, s) =

√
Ek + k3

4m

(
U
σ3U

)
ϕs (16.26)

where we introduced the following unitary 2× 2 matrix:

U =

√
Ek +m

2(Ek + k3)

(
1 +

σ3(~σ · ~k)

Ek +m

)
(16.27)

Homework: Confirm the relations (16.25), (16.26), and U †U = 1 (unitarity).

We can now define the following “rotated” 2-component Pauli spinor 14 :

χs ≡ U ϕs (16.28)

to express Eq.(16.26) in the simple form

u+(~k, s) =

√
Ek + k3

4m

(
1
σ3

)
χs (16.29)

Homework: Noting that Ek + k3 = k+
√

2, use the spinor (16.29) and the form of the matrix

γ5 =

(
0 1
1 0

)
to confirm the relations (15.9) and (15.10).

14The rotation (16.28) is called a “Melosh rotation”.
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